42 resultados para Café Shop
Resumo:
We study the two-machine flow shop problem with an uncapacitated interstage transporter. The jobs have to be split into batches, and upon completion on the first machine, each batch has to be shipped to the second machine by a transporter. The best known heuristic for the problem is a –approximation algorithm that outputs a two-shipment schedule. We design a –approximation algorithm that finds schedules with at most three shipments, and this ratio cannot be improved, unless schedules with more shipments are created. This improvement is achieved due to a thorough analysis of schedules with two and three shipments by means of linear programming. We formulate problems of finding an optimal schedule with two or three shipments as integer linear programs and develop strongly polynomial algorithms that find solutions to their continuous relaxations with a small number of fractional variables
Resumo:
We study the two-machine flow shop problem with an uncapacitated interstage transporter. The jobs have to be split into batches, and upon completion on the first machine, each batch has to be shipped to the second machine by a transporter. The best known heuristic for the problem is a –approximation algorithm that outputs a two-shipment schedule. We design a –approximation algorithm that finds schedules with at most three shipments, and this ratio cannot be improved, unless schedules with more shipments are created. This improvement is achieved due to a thorough analysis of schedules with two and three shipments by means of linear programming. We formulate problems of finding an optimal schedule with two or three shipments as integer linear programs and develop strongly polynomial algorithms that find solutions to their continuous relaxations with a small number of fractional variables.
Resumo:
We consider the problem of scheduling families of jobs in a two-machine open shop so as to minimize the makespan. The jobs of each family can be partitioned into batches and a family setup time on each machine is required before the first job is processed, and when a machine switches from processing a job of some family to a job of another family. For this NP-hard problem the literature contains (5/4)-approximation algorithms that cannot be improved on using the class of group technology algorithms in which each family is kept as a single batch. We demonstrate that there is no advantage in splitting a family more than once. We present an algorithm that splits one family at most once on a machine and delivers a worst-case performance ratio of 6/5.
Resumo:
This paper considers two-machine flow shop scheduling problems with machine availability constraints. When the processing of a job is interrupted by an unavailability period of a machine, we consider both the resumable scenario in which the processing can be resumed when the machine next becomes available, and the semi-resumable scenario in which some portion of the processing is repeated but the job is otherwise resumable. For the problem with several non-availability intervals on the first machine under the resumable scenario, we present a fast (3/2)-approximation algorithm. For the problem with one non-availability interval under the semi-resumable scenario, a polynomial-time approximation scheme is developed.
Resumo:
We consider the two-machine open shop scheduling problem in which the jobs are brought to the system by a single transporter and moved between the processing machines by the same transporter. The purpose is to split the jobs into batches and to find the sequence of moves of the transporter so that the time by which the completed jobs are collected together on board the transporter is minimal. We present a 7/5-approximation algorithm. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Abstract not available