17 resultados para volume of fluid method
Resumo:
Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, flow in elastic pipes and blood vessels and extrusion of metals through dies. However a comprehensive computational model of these multi-physics phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply even to the extent in metal forming, for example, that the deformation of the die is totally ignored. More recently, strategies for solving the full coupling between the fluid and soild mechanics behaviour have developed. Conventionally, the computational modelling of fluid structure interaction is problematical since computational fluid dynamics (CFD) is solved using finite volume (FV) methods and computational structural mechanics (CSM) is based entirely on finite element (FE) methods. In the past the concurrent, but rather disparate, development paths for the finite element and finite volume methods have resulted in numerical software tools for CFD and CSM that are different in almost every respect. Hence, progress is frustrated in modelling the emerging multi-physics problem of fluid structure interaction in a consistent manner. Unless the fluid-structure coupling is either one way, very weak or both, transferring and filtering data from one mesh and solution procedure to another may lead to significant problems in computational convergence. Using a novel three phase technique the full interaction between the fluid and the dynamic structural response are represented. The procedure is demonstrated on some challenging applications in complex three dimensional geometries involving aircraft flutter, metal forming and blood flow in arteries.
Resumo:
Bulk and interdendritic flow during solidification alters the microstructure development, potentially leading to the formation of defects. In this paper, a 3D numerical model is presented for the simulation of dendritic growth in the presence of fluid flow in both liquid and semi-solid zones during solidification. The dendritic growth was solved by the combination of a stochastic nucleation approach with a finite difference solution of the solute diffusion equation and. a projection method solution of the Navier-Stokes equations. The technique was applied first to simulate the growth of a single dendrite in 2D and 3D in an isothermal environment with forced fluid flow. Significant differences were found in the evolution of dendritic morphology when comparing the 2D and 3D results. In 3D the upstream arm has a faster growth velocity due to easier flow around the perpendicular arms. This also promotes secondary arm formation on the upstream arm. The effect of fluid flow on columnar dendritic growth and micro-segregation in constrained solidification conditions is then simulated. For constrained growth, 2D simulations lead to even greater inaccuracies as compared to 3D.