19 resultados para ionomer glass cements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of employing zinc polycarboxylate dental cement as a controlled release material has been studied. Benzalkonium chloride was used as the active ingredient, and incorporated at concentrations of 1, 2 and 3% by mass within the cement. At these levels, there was no observable effect on the speed of setting. Release was followed using an ion-selective electrode to determine changes in chloride ion concentration with time. This technique showed that the additive was released when the cured cement was placed in water, with release occurring by a diffusion mechanism for the first 3 h, but continuing beyond that for up to 1 week. Diffusion coefficients were in the range 5.62 × 10(−6) cm(2) s(−1) (for 1% concentration) to 10.90 × 10(−6) cm(2) s(−1) (for 3% concentration). Up to 3% of the total loading of benzalkonium chloride was released from the zinc polycarboxylate after a week, which is similar to that found in previous studies with glass-ionomer cement. It is concluded that zinc polycarboxylate cement is capable of acting as a useful material for the controlled release of active organic compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water desorption behaviour of three different zinc oxide dental cements (two polycarboxylates, one phosphate) has been studied in detail. Disc-shaped specimens of each material were prepared and allowed to lose water by being subjected to a low humidity desiccating atmosphere over concentrated sulfuric acid. In all three cements, water loss was found to follow Fick's second law for at least 6 h (until M(t)/M(infinity) values were around 0.5), with diffusion coefficients ranging from 6.03 x 10(-8 )cm(2 )s(-1) (for the zinc phosphate) to 2.056 x 10(-7 )cm(2 )s(-1) (for one of the zinc polycarboxylates, Poly F Plus). Equilibration times for desorption were of the order of 8 weeks, and equilibrium water losses ranged from 7.1% for zinc phosphate to 16.9% and 17.4% for the two zinc polycarboxylates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of zinc oxide-based dental cements (zinc phosphate and zinc polycarboxylate) to take up fluoride from aqueous solution has been studied. Only zinc phosphate cement was found to take up any measurable fluoride after 5 h exposure to the solutions. The zinc oxide filler of the zinc phosphate also failed to take up fluoride from solution. The key interaction for this uptake was thus shown to involve the phosphate groups of the set cement. However, whether this took the form of phosphate/fluoride exchange, or the formation of oxyfluoro-phosphate groups was not clear. Fluoride uptake followed radicaltime kinetics for about 2 h in some cases, but was generally better modelled by the Elovich equation, dq(t)/dt = alpha exp(-beta q(t)). Values for alpha varied from 3.80 to 2.48 x 10(4), and for beta from 7.19 x 10(-3) to 0.1946, though only beta showed any sort of trend, becoming smaller with increasing fluoride concentration. Fluoride was released from the zinc phosphate cements in processes that were diffusion based up to M(t)/M(infinity) of about 0.4. No further release occurred when specimens were placed in fresh volumes of deionised water. Only a fraction of the fluoride taken up was re-released, demonstrating that most of the fluoride taken up becomes irreversibly bound within the cement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate a number of gas flames for fire polishing borosilicate glass capillaries used in the manufacturing of IVF micro-pipettes. Hydrofluoric acid (HF) was also used as an alternative to finish the pipette end. Glass micro tools in the IVF industry are drawn from hollow glass capillaries of diameter 1 mm. These capillaries are cut manually to a length of 100 mm from hollow glass rods resulting in sharp and chipped edges. These capillaries are held in a customised holder having padding of soft silicone or rubber. Sharp and uneven edges of these capillaries pick up particles of rubber or soft silicone shavings, rendering them ineffective for IVF treatments. The working range of borosilicate glass is 800-1,200 degrees C. The experiments involved analysis of fire polishing process for borosilicate glass capillaries using candle, butane, propane, 2350 butane propane, oxyacetylene gas flames, finding the optimum distance of the capillary relative to the flame, optimum time for which the capillary should be held in the flame and optimum region of the flame which gives the required temperature range. The results show that 2350 butane propane gas mix is optimum for fire polishing of borosilicate glass capillaries. The paper is concluded by comparing the results of fire polishing with the results of acid polishing, in which HF of 1.6% concentration is used to etch the ends of the borosilicate glass pipettes.