17 resultados para finite and infinitesimal models
Resumo:
This paper presents modeling results about the performance of flexible substrates when subjected to higher lead-free reflow temperatures. Both adhesiveless and adhesive types of polyimide substrates were studied. Finite element (FE) models of flex substrates were built, two copper tracks located in the centre of the substrate was considered. The thermal induced shear stress in the flex substrate during the lead-free reflow process was studied and the effect of the design changes including the track thickness, flex thickness, and copper width were studied. For both types of flexes, the one of most important variables for minimizing damage to the substrate is the height of the copper tracks. The height of flex and the width of copper track show less impact. Beside of the geometry effects, the increase in reflow peak temperature can also result in a significant increase in the interfacial stress between the copper track and flex. Higher stresses were identified within the adhesive flex due to the big CTE mismatch between the copper and adhesive/dielectric
Resumo:
The latest advances in multi-physics modelling both using high fidelity techniques and reduced order and behavioural models will be discussed. Particular focus will be given to the application and validation of these techniques for modelling the fabrication, packaging and subsequent reliability of micro-systems based components. The paper will discuss results from a number of research projects with particular emphasis on the techniques being developed in a major UK Goverment funded project - 3D-MINTEGRATION (www.3d-mintegration.com).