49 resultados para fault-tolerant scheduling
Resumo:
The paper deals with the determination of an optimal schedule for the so-called mixed shop problem when the makespan has to be minimized. In such a problem, some jobs have fixed machine orders (as in the job-shop), while the operations of the other jobs may be processed in arbitrary order (as in the open-shop). We prove binary NP-hardness of the preemptive problem with three machines and three jobs (two jobs have fixed machine orders and one may have an arbitrary machine order). We answer all other remaining open questions on the complexity status of mixed-shop problems with the makespan criterion by presenting different polynomial and pseudopolynomial algorithms.
Resumo:
We survey recent results on the computational complexity of mixed shop scheduling problems. In a mixed shop, some jobs have fixed machine orders (as in the job shop), while the operations of the other jobs may be processed in arbitrary order (as in the open shop). The main attention is devoted to establishing the boundary between polynomially solvable and NP-hard problems. When the number of operations per job is unlimited, we focus on problems with a fixed number of jobs.
Resumo:
In this paper, we study a problem of scheduling and batching on two machines in a flow-shop and open-shop environment. Each machine processes operations in batches, and the processing time of a batch is the sum of the processing times of the operations in that batch. A setup time, which depends only on the machine, is required before a batch is processed on a machine, and all jobs in a batch remain at the machine until the entire batch is processed. The aim is to make batching and sequencing decisions, which specify a partition of the jobs into batches on each machine, and a processing order of the batches on each machine, respectively, so that the makespan is minimized. The flow-shop problem is shown to be strongly NP-hard. We demonstrate that there is an optimal solution with the same batches on the two machines; we refer to these as consistent batches. A heuristic is developed that selects the best schedule among several with one, two, or three consistent batches, and is shown to have a worst-case performance ratio of 4/3. For the open-shop, we show that the problem is NP-hard in the ordinary sense. By proving the existence of an optimal solution with one, two or three consistent batches, a close relationship is established with the problem of scheduling two or three identical parallel machines to minimize the makespan. This allows a pseudo-polynomial algorithm to be derived, and various heuristic methods to be suggested.
Resumo:
We study a two-machine open shop scheduling problem, in which one machine is not available for processing during a given time interval. The objective is to minimize the makespan. We show that the problem is NP-hard and present an approximation algorithm with a worst-case ratio of 4/3.
Resumo:
It is known that for the open shop scheduling problem to minimize the makespan there exists no polynomial-time heuristic algorithm that guarantees a worst-case performance ratio better than 5/4, unless P6≠NP. However, this result holds only if the instance of the problem contains jobs consisting of at least three operations. This paper considers the open shop scheduling problem, provided that each job consists of at most two operations, one of which is to be processed on one of the m⩾2 machines, while the other operation must be performed on the bottleneck machine, the same for all jobs. For this NP-hard problem we present a heuristic algorithm and show that its worst-case performance ratio is 5/4.
Resumo:
We consider the problem of scheduling independent jobs on two machines in an open shop, a job shop and a flow shop environment. Both machines are batching machines, which means that several operations can be combined into a batch and processed simultaneously on a machine. The batch processing time is the maximum processing time of operations in the batch, and all operations in a batch complete at the same time. Such a situation may occur, for instance, during the final testing stage of circuit board manufacturing, where burn-in operations are performed in ovens. We consider cases in which there is no restriction on the size of a batch on a machine, and in which a machine can process only a bounded number of operations in one batch. For most of the possible combinations of restrictions, we establish the complexity status of the problem.
Resumo:
This paper considers the problem of sequencing n jobs in a three-machine shop with the objective of minimising the maximum completion time. The shop consists of three machines, M1,M2 and M_{3}. A job is first processed on M1 and then is assigned either the route (M2,M_{3}) or the route (M_{3},M2). Thus, for our model the processing route is given by a partial order of machines, as opposed to the linear order of machines for a job shop, or to an arbitrary sequence of machines for an open shop. The main result is on O(nlog n) time heuristic, which generates a schedule with the makespan that is at most 5/3 times the optimum value.
Resumo:
The scheduling problem of minimizing the makespan for m parallel dedicated machines under single resource constraints is considered. For different variants of the problem the complexity status is established. Heuristic algorithms employing the so-called group technology approach are presented and their worst-case behavior is examined. Finally, a polynomial time approximation scheme is presented for the problem with fixed number of machines.
Resumo:
We study a two-machine open shop scheduling problem, in which the machines are not continuously available for processing. No preemption is allowed in the processing of any operation. The objective is to minimize the makespan. We consider approximability issues of the problem with more than one non-availability intervals and present an approximation algorithm with a worst-case ratio of 4/3 for the problem with a single non-availability interval.
Resumo:
The paper considers scheduling problems for parallel dedicated machines subject to resource constraints. A fairly complete computational complexity classification is obtained, a number of polynomial-time algorithms are designed. For the problem with a fixed number of machines in which a job uses at most one resource of unit size a polynomial-time approximation scheme is offered.
Resumo:
This paper presents the findings of an experiment which looked at the effects of performing applied tasks (action learning) prior to the completion of the theoretical learning of these tasks (explanation-based learning), and vice-versa. The applied tasks took the form of laboratories for the Object-Oriented Analysis and Design (OOAD) course, theoretical learning was via lectures.
Resumo:
We study a two-machine flow shop scheduling problem with no-wait in process, in which one of the machines is not available during a specified time interval. We consider three scenarios of handing the operation affected by the nonavailability interval. Its processing may (i) start from scratch after the interval, or (ii) be resumed from the point of interruption, or (iii) be partially restarted after the interval. The objective is to minimize the makespan. We present an approximation algorithm that for all these scenarios delivers a worst-case ratio of 3/2. For the second scenario, we offer a 4/3-approximation algorithm.
Resumo:
This paper considers a variant of the classical problem of minimizing makespan in a two-machine flow shop. In this variant, each job has three operations, where the first operation must be performed on the first machine, the second operation can be performed on either machine but cannot be preempted, and the third operation must be performed on the second machine. The NP-hard nature of the problem motivates the design and analysis of approximation algorithms. It is shown that a schedule in which the operations are sequenced arbitrarily, but without inserted machine idle time, has a worst-case performance ratio of 2. Also, an algorithm that constructs four schedules and selects the best is shown to have a worst-case performance ratio of 3/2. A polynomial time approximation scheme (PTAS) is also presented.
Resumo:
The paper considers the flow shop scheduling problems to minimize the makespan, provided that an individual precedence relation is specified on each machine. A fairly complete complexity classification of problems with two and three machines is obtained.