22 resultados para computational mechanics
Resumo:
Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem for mapping meshes onto parallel computers. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight in the graph with the aim of minimising the parallel communication overhead. However it has been shown that for certain classes of problem, the convergence of the underlying solution algorithm is strongly influenced by the shape or aspect ratio of the subdomains. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.
Resumo:
In many areas of simulation, a crucial component for efficient numerical computations is the use of solution-driven adaptive features: locally adapted meshing or re-meshing; dynamically changing computational tasks. The full advantages of high performance computing (HPC) technology will thus only be able to be exploited when efficient parallel adaptive solvers can be realised. The resulting requirement for HPC software is for dynamic load balancing, which for many mesh-based applications means dynamic mesh re-partitioning. The DRAMA project has been initiated to address this issue, with a particular focus being the requirements of industrial Finite Element codes, but codes using Finite Volume formulations will also be able to make use of the project results.
Resumo:
In parallel adaptive finite element simulations the work load on the individual processors may change frequently. To (re)distribute the load evenly over the processors a load balancing heuristic is needed. Common strategies try to minimise subdomain dependencies by optimising the cutsize of the partitioning. However for certain solvers cutsize only plays a minor role, and their convergence is highly dependent on the subdomain shapes. Degenerated subdomain shapes cause them to need significantly more iterations to converge. In this work a new parallel load balancing strategy is introduced which directly addresses the problem of generating and conserving reasonably good subdomain shapes in a dynamically changing Finite Element Simulation. Geometric data is used to formulate several cost functions to rate elements in terms of their suitability to be migrated. The well known diffusive method which calculates the necessary load flow is enhanced by weighting the subdomain edges with the help of these cost functions. The proposed methods have been tested and results are presented.
Resumo:
A method is outlined for optimising graph partitions which arise in mapping unstructured mesh calculations to parallel computers. The method employs a relative gain iterative technique to both evenly balance the workload and minimise the number and volume of interprocessor communications. A parallel graph reduction technique is also briefly described and can be used to give a global perspective to the optimisation. The algorithms work efficiently in parallel as well as sequentially and when combined with a fast direct partitioning technique (such as the Greedy algorithm) to give an initial partition, the resulting two-stage process proves itself to be both a powerful and flexible solution to the static graph-partitioning problem. Experiments indicate that the resulting parallel code can provide high quality partitions, independent of the initial partition, within a few seconds. The algorithms can also be used for dynamic load-balancing, reusing existing partitions and in this case the procedures are much faster than static techniques, provide partitions of similar or higher quality and, in comparison, involve the migration of a fraction of the data.
Resumo:
Abstract not available
Resumo:
A number of research groups are now developing and using finite volume (FV) methods for computational solid mechanics (CSM). These methods are proving to be equivalent and in some cases superior to their finite element (FE) counterparts. In this paper we will describe a vertex-based FV method with arbitrarily structured meshes, for modelling the elasto-plastic deformation of solid materials undergoing small strains in complex geometries. Comparisons with rational FE methods will be given.
Resumo:
The difficulties encountered in implementing large scale CM codes on multiprocessor systems are now fairly well understood. Despite the claims of shared memory architecture manufacturers to provide effective parallelizing compilers, these have not proved to be adequate for large or complex programs. Significant programmer effort is usually required to achieve reasonable parallel efficiencies on significant numbers of processors. The paradigm of Single Program Multi Data (SPMD) domain decomposition with message passing, where each processor runs the same code on a subdomain of the problem, communicating through exchange of messages, has for some time been demonstrated to provide the required level of efficiency, scalability, and portability across both shared and distributed memory systems, without the need to re-author the code into a new language or even to support differing message passing implementations. Extension of the methods into three dimensions has been enabled through the engineering of PHYSICA, a framework for supporting 3D, unstructured mesh and continuum mechanics modeling. In PHYSICA, six inspectors are used. Part of the challenge for automation of parallelization is being able to prove the equivalence of inspectors so that they can be merged into as few as possible.