21 resultados para VISCOSITY
Resumo:
As the trend toward further miniaturisation of pocket and handheld consumer electronic products continues apace, the requirements for even smaller solder joints will continue. With further reductions in the size of solder joints, the reliability of solder joints will become more and more critical to the long-term performance of electronic products. Solder joints play an important role in electronics packaging, serving both as electrical interconnections between the components and the board, and as mechanical support for components. With world-wide legislation for the removal/reduction of lead and other hazardous materials from electrical and electronic products, the electronics manufacturing industry has been faced with an urgent search for new lead-free solder alloy systems and other solder alternatives. In order to achieve high volume, low cost production, the stencil printing process and subsequent wafer bumping of solder paste has become indispensable. There is wide agreement in industry that the paste printing process accounts for the majority of assembly defects, and most defects originate from poor understanding of the effect of printing process parameters on printing performance. The printing of ICAs and lead-free solder pastes through the very small stencil apertures required for flip chip applications was expected to result in increased stencil clogging and incomplete transfer of paste to the printed circuit pads. Paste release from the stencil apertures is dependent on the interaction between the solder paste, surface pad and aperture wall; including its shape. At these very narrow aperture sizes the paste rheology becomes crucial for consistent paste withdrawal because for smaller paste volumes surface tension effects become dominant over viscous flow. Successful aperture filling and release will greatly depend on the rheology of the paste material. Wall-slip plays an important role in characterising the flow behaviour of solder paste materials. The wall- slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry. These interactions could lead to the presence of a thin solvent layer adjacent to the wall, which gives rise to slippage. The wall slip effect can play an important role in ensuring successful paste release after the printing process. The aim of this study was to investigate the influence of the paste microstructure on slip formation for the paste materials (lead-free solder paste and isotropic conductive adhesives). The effect of surface roughness on the paste viscosity was investigated. It was also found that altering the surface roughness of the parallel plate measuring geometry did not significantly eliminate wall slip as was expected. But results indicate that the use of a relatively rough surface helps to increase paste adhesion to the plates, inducing structural breakdown of the paste. Most importantly, the study also demonstrated on how the wall slip formation in the paste material could be utilised for understanding of the paste microstructure and its flow behaviour
Resumo:
Purpose – The purpose of this paper is to develop a quality control tool based on rheological test methods for solder paste and flux media. Design/methodology/approach – The rheological characterisation of solder pastes and flux media was carried out through the creep-recovery, thixotropy and viscosity test methods. A rheometer with a parallel plate measuring geometry of 40mm diameter and a gap height of 1mm was used to characterise the paste and associated flux media. Findings – The results from the study showed that the creep-recovery test can be used to study the deformation and recovery of the pastes, which can be used to understand the slump behaviour in solder pastes. In addition, the results from the thixotropic and viscosity test were unsuccessful in determining the differences in the rheological flow behaviour in the solder pastes and the flux medium samples. Research limitations/implications – More extensive rheological and printing testing is needed in order to correlate the findings from this study with the printing performance of the pastes. Practical implications – The rheological test method presented in the paper will provide important information for research and development, quality control and production staff to facilitate the manufacture of solder pastes and flux media. Originality/value – The paper explains how the rheological test can be used as a quality control tool to identify the suitability of a developmental solder paste and flux media used for the printing process.
Resumo:
Purpose – The purpose of this paper is to investigate the rheological behaviour of three different lead-free solder pastes used for surface mount applications in the electronic industry.Design/methodology/approach – This study concerns the rheological measurements of solder paste samples and is made up of three parts. The first part deals with the measurement of rhelogical properties with three different measuring geometries, the second part looks into the effect of frequencies on oscillatory stress sweep measurements and the final part reports on the characterisation and comparison of three different types of Pb-free solder pastes. Findings – Among the three geometries, the serrated parallel plate was found effective in minimising the wall-slip effect. From the oscillatory stresssweep data with different frequencies; it was observed that the linear visco-elastic region is independent of frequency for all the solder paste samples. To understand the shear thinning behaviour of solder paste, the well known Cross and Carreau models were fitted to the viscosity data. Moreover,creep-recovery and dynamic frequency-sweep tests were also carried out without destroying the sample’s structure and have yielded useful information on the pastes behaviour.Research limitations/implications – More extensive research is needed to fully characterise the wall-slip behaviour during the rheological measurements of solder pastes. Practical implications – The rheological test results presented in this paper will be of important value for research and development, quality control and facilitation of the manufacturing of solder pastes and flux mediums. Originality/value – This paper shows how wall-slip effects can be effectively avoided during rheological measurements of solder pastes. The paper also outlines how different rheological test methods can be used to characterise solder paste behaviours
Resumo:
The market for solder paste materials in the electronic manufacturing and assembly sector is very large and consists of material and equipment suppliers and end users. These materials are used to bond electronic components (such as flip-chip, CSP and BGA) to printed circuit boards (PCB's) across a range of dimensions where the solder interconnects can be in the order of 0.05mm to 5mm in size. The non-Newtonian flow properties exhibited by solder pastes during its manufacture and printing/deposition phases have been of practical concern to surface mount engineers and researchers for many years. The printing of paste materials through very small-sized stencil apertures is known to lead to increased stencil clogging and incomplete transfer of paste to the substrate pads. At these very narrow aperture sizes the paste rheology and particle-wall interactions become crucial for consistent paste withdrawal. These non-Newtonian effects must be understood so that the new paste formulations can be optimised for consistent printing. The focus of the study reported in this paper is the characterisation of the rheological properties of solder pastes and flux mediums, and the evaluation of the effect of these properties on the pastes' printing performance at the flip-chip assembly application level. Solder pastes are known to exhibit a thixotropic behaviour, which is recognised by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterisation of this time-dependent theological behaviour of solder pastes is crucial for establishing the relationships between the pastes' structure and flow behaviour; and for correlating the physical parameters with paste printing performance. In this paper, we present a number of methods which have been developed for characterising the time-dependent and non-Newtonian rheological behaviour of solder pastes and flux mediums as a function of shear rates. We also present results of the study of the rheology of the solder pastes and flux mediums using the structural kinetic modelling approach, which postulates that the network structure of solder pastes breaks down irreversibly under shear, leading to time and shear dependent changes in the flow properties. Our results show that for the solder pastes used in the study, the rate and extent of thixotropy was generally found to increase with increasing shear rate. The technique demonstrated in this study has wide utility for R&D personnel involved in new paste formulation, for implementing quality control procedures used in solder paste manufacture and packaging; and for qualifying new flip-chip assembly lines
Resumo:
Rheological properties of solder pastes are very important for a high quality surface mount technology process. The stencil/screen printing process of solder pastes is one of the most critical steps in the SMT assembly process, as most of the assembly defects can often be shown to originate from paste rheology and associated poor printing performance. This paper concerns an investigation of the effect of solder paste composition on the rheological properties and behaviour of four different solder pastes. We report on the evaluation of three different paste formulations based on the no-clean flux composition, with different alloy composition, metal content and particle size using a range of rheological characterisation techniques - including viscosity measurements, yield stress, oscillatory and creep-recovery tests. Our results show that in the viscosity test, all solder pastes exhibited a shear thinning behaviour in nature with different highest maximum viscosity. In the region of shear thinning behaviour the paste 3 delivered the best results. Viscosity test helps to understand the solid and cohesive behaviour of solder pastes. Good solid and cohesive behaviour indicates a good paste roll and helps to avoid paste bleeding. The yield stress test has been used to study the effect of temperature on the flow behaviour of solder pastes. Yield stress was measured for a range of temperature from 15deg C to 35deg C with an increment of 5degC. The result indicated a decreasing of the yield stress point if the temperature was increased. Paste 4 has shown the minimum dependence on temperature. The oscillatory test has been used to find out the linear visco-elastic range and to study the solid and liquid like behaviours of solder pastes. Paste 1 indicated the biggest linear visco-elastic region (LVR) and the highest value of G' and G" which means solder paste 1 will be needed a higher squeegee pressure in the printing process. In the creep recovery test paste 4 showed the best- - recovery and the lowest values of creep and recovery compliance which indicated a good printing behaviour. The test also has showed the solder paste with smaller particle size exhibit less recovery
Resumo:
The purpose of this investigation was to examine the preparation and characterisation of hexane-in-water emulsions stabilised by clay particles. These emulsions, called Pickering emulsions, are characterised by the adsorption of solid particles at the oil/water (o/w) interface. The development of an elastic film at the o/w interface following the adsorption of colloidal particles helps to promote emulsion stability. Three different solid materials were used: silica sand, kaolin, and bentonite. Particles were added to the liquid mixtures in the range of 0.5–10 g dm−3. Emulsions were prepared using o/w ratios of 0.1, 0.2, 0.3, and 0.4. The effect of sodium chloride, on the stability of the prepared emulsions, was assessed in the range of 0–0.5 mol dm−3. In addition the use of a cationic surfactant hexadecyl-trimethylammonium bromide (CTAB) as an aid to improving emulsion stability was assessed in the concentration range of 0–0.05% (w/v). Characterisation of emulsion stability was realised through measurements of rheological properties including non-Newtonian viscosity, the elastic modulus, G', the loss modulus, G", and complex modulus, G*. The stability of the emulsions was evaluated immediately after preparation and 4 weeks later. Using the stability criteria, that for highly stable emulsions: G' > G" and both G' and G" are independent of frequency (varpi) it was concluded that highly stable emulsions could be prepared using a bentonite concentration of 2% (or more); an o/w ratio greater than 0.2; a CTAB concentration of 0.01%; and a salt concentration of 0.05 M or less—though salt was required.