17 resultados para Transitional phenomena


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of interacting complex phenomena takes place during the casting of metallic components. Here molten metal is poured into a mould cavity where it flows, cools, solidifies and then deforms in its solid state. As the metal cools, thermal gradients will promote thermal convection which will redistribute the heat around the component (usually from feeders or risers) towards the solidification front and mushy zone. Also, as the evolving solid regions of the cast component deform they will form gap at the cast-mould interface. This gap may change the rate of solidification in certain parts the casting, hence affecting the manner in which the cast component solidifies. Interaction between a cast component and its surrounding mould will also govern stress magnitudes in both the cast and mould -these may lead to defects such as cracks. This paper presents a multiphysics modelling approach to this complex process. Emphasis will be placed on the interacting phenomena taking place during the process and the modelling strategy used. Comparisons with plant data are also be given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The difficulties encountered in implementing large scale CM codes on multiprocessor systems are now fairly well understood. Despite the claims of shared memory architecture manufacturers to provide effective parallelizing compilers, these have not proved to be adequate for large or complex programs. Significant programmer effort is usually required to achieve reasonable parallel efficiencies on significant numbers of processors. The paradigm of Single Program Multi Data (SPMD) domain decomposition with message passing, where each processor runs the same code on a subdomain of the problem, communicating through exchange of messages, has for some time been demonstrated to provide the required level of efficiency, scalability, and portability across both shared and distributed memory systems, without the need to re-author the code into a new language or even to support differing message passing implementations. Extension of the methods into three dimensions has been enabled through the engineering of PHYSICA, a framework for supporting 3D, unstructured mesh and continuum mechanics modeling. In PHYSICA, six inspectors are used. Part of the challenge for automation of parallelization is being able to prove the equivalence of inspectors so that they can be merged into as few as possible.