19 resultados para Subgrid Scale Model
Resumo:
A complete model of particle impact degradation during dilute-phase pneumatic conveying is developed, which combines a degradation model, based on the experimental determination of breakage matrices, and a physical model of solids and gas flow in the pipeline. The solids flow in a straight pipe element is represented by a model consisting of two zones: a strand-type flow zone immediately downstream of a bend, followed by a fully suspended flow region after dispersion of the strand. The breakage matrices constructed from data on 90° angle single-impact tests are shown to give a good representation of the degradation occurring in a pipe bend of 90° angle. Numerical results are presented for degradation of granulated sugar in a large scale pneumatic conveyor.
Resumo:
Computer egress simulation has potential to be used in large scale incidents to provide live advice to incident commanders. While there are many considerations which must be taken into account when applying such models to live incidents, one of the first concerns the computational speed of simulations. No matter how important the insight provided by the simulation, numerical hindsight will not prove useful to an incident commander. Thus for this type of application to be useful, it is essential that the simulation can be run many times faster than real time. Parallel processing is a method of reducing run times for very large computational simulations by distributing the workload amongst a number of CPUs. In this paper we examine the development of a parallel version of the buildingEXODUS software. The parallel strategy implemented is based on a systematic partitioning of the problem domain onto an arbitrary number of sub-domains. Each sub-domain is computed on a separate processor and runs its own copy of the EXODUS code. The software has been designed to work on typical office based networked PCs but will also function on a Windows based cluster. Two evaluation scenarios using the parallel implementation of EXODUS are described; a large open area and a 50 story high-rise building scenario. Speed-ups of up to 3.7 are achieved using up to six computers, with high-rise building evacuation simulation achieving run times of 6.4 times faster than real time.
Resumo:
A toxicity model on dividing the computational domain into two parts, a control region (CR) and a transport region (TR), for species calculation was recently developed. The model can be incorporated with either the heat source approach or the eddy dissipation model (EDM). The work described in this paper is a further application of the toxicity model with modifications of the EDM for vitiated fires. In the modified EDM, chemical reaction only occurs within the CR. This is consistent with the approach used in the species concentration calculations within the toxicity model in which yields of combustion products only change within the CR. A vitiated large room-corridor fire, in which the carbon monoxide (CM) concentrations are very high and the temperatures are relatively low at locations distant from the original fire source, is simulated using the modified EDM coupled with the toxicity model. Compared with the EDM, the modified EDM provide significant improvements in the predictions of temperatures at remote locations. Predictions of species concentrations at various locations follow the measured trends. Good agreements between the measured and predicted species concentrations are obtained at the vitiated fire stage.
Resumo:
This paper presents an approach for detecting local damage in large scale frame structures by utilizing regularization methods for ill-posed problems. A direct relationship between the change in stiffness caused by local damage and the measured modal data for the damaged structure is developed, based on the perturbation method for structural dynamic systems. Thus, the measured incomplete modal data can be directly adopted in damage identification without requiring model reduction techniques, and common regularization methods could be effectively employed to solve the developed equations. Damage indicators are appropriately chosen to reflect both the location and severity of local damage in individual components of frame structures such as in brace members and at beam-column joints. The Truncated Singular Value Decomposition solution incorporating the Generalized Cross Validation method is introduced to evaluate the damage indicators for the cases when realistic errors exist in modal data measurements. Results for a 16-story building model structure show that structural damage can be correctly identified at detailed level using only limited information on the measured noisy modal data for the damaged structure.