19 resultados para Probabilistic Algorithms
Resumo:
A zone based systems design framework is described and utilised in the implementation of a message authentication code (MAC) algorithm based on symmetric key block ciphers. The resulting block cipher based MAC algorithm may be used to provide assurance of the authenticity and, hence, the integrity of binary data. Using software simulation to benchmark against the de facto cipher block chaining MAC (CBC-MAC) variant used in the TinySec security protocol for wireless sensor networks and the NIST cipher block chaining MAC standard, CMAC; we show that our zone based systems design framework can lead to block cipher based MAC constructs that point to improvements in message processing efficiency, processing throughput and processing latency.
Resumo:
Orthogonal frequency division multiplexing(OFDM) is becoming a fundamental technology in future generation wireless communications. Call admission control is an effective mechanism to guarantee resilient, efficient, and quality-of-service (QoS) services in wireless mobile networks. In this paper, we present several call admission control algorithms for OFDM-based wireless multiservice networks. Call connection requests are differentiated into narrow-band calls and wide-band calls. For either class of calls, the traffic process is characterized as batch arrival since each call may request multiple subcarriers to satisfy its QoS requirement. The batch size is a random variable following a probability mass function (PMF) with realistically maximum value. In addition, the service times for wide-band and narrow-band calls are different. Following this, we perform a tele-traffic queueing analysis for OFDM-based wireless multiservice networks. The formulae for the significant performance metrics call blocking probability and bandwidth utilization are developed. Numerical investigations are presented to demonstrate the interaction between key parameters and performance metrics. The performance tradeoff among different call admission control algorithms is discussed. Moreover, the analytical model has been validated by simulation. The methodology as well as the result provides an efficient tool for planning next-generation OFDM-based broadband wireless access systems.
Resumo:
For existing reinforced concrete structures exposed to saline or marine conditions, there is an increasing engineering interest in their remaining safety and serviceability. A significant factor is the corrosion of steel reinforcement. At present there is little field experience and other data available. This limits the possibility for developing purely empirical models for strength and performance deterioration for use in structural safety and serviceability assessment. An alternative approach using theoretical concepts and probabilistic modeling is proposed herein. It is based on the evidence that the rate of diffusion of chlorides is influenced by internal damage to the concrete surrounding the reinforcement. This may be due to localized stresses resulting from external loading or through concrete shrinkage. Usually, the net effect is that the time to initiation of active corrosion is shortened, leading to greater localized corrosion and earlier reduction of ultimate capacity and structural stiffness. The proposed procedure is applied to an example beam and compared to experimental observations,including estimates of uncertainty in the remaining ultimate moment capacity and beam stiffness. Reasonably good agreement between the results of the proposed procedure and the experiment was found