49 resultados para Package


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid OECB (Opto-Electrical Circuit Boards) are expected to make a significant impact in the telecomm switches arena within the next five years, creating optical backplanes with high speed point-to-point optical interconnects. OECB's incorporate short range optical interconnects, and are based on VCSEL (Vertical Cavity Surface Emitting Diode) and PD (Photo Diode) pairs, connected to each other via embedded waveguides in the OECB. The VCSEL device is flip-chip assembled onto an organic substrate with embedded optical waveguides. The performance of the VCSEL device is governed by the thermal, mechanical and optical characteristics of this assembly. During operation, the VCSEL device will heat up and the thermal change together with the CTE mismatch in the materials, will result in potential misalignment between the VCSEL apertures and the waveguide openings in the substrate. Any degree of misalignment will affect the optical performance of the package. This paper will present results from a highly coupled modelling analysis involving thermal, mechanical and optical models. The paper will also present results from an optimisation analysis based on Design of Experiments (DOE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deployment of OECBs (opto-electrical circuit boards) is expected to make a significant impact in the telecomm switches arena within the next five years. This will create optical backplanes with high speed point-to-point optical interconnects. The crucial aspect in the manufacturing process of the optical backplane is the successful coupling between VCSEL (vertical cavity surface emitting laser) device and embedded waveguide in the OECB. The results from a thermo-mechanical analysis are being used in a purely optical model, which solves optical energy and attenuation from the VCSEL aperture into, and then through, the waveguide. Results from the modelling are being investigated using DOE analysis to identify packaging parameters that minimise misalignment. This is achieved via a specialist optimisation software package. Results from the thermomechanical and optical models are discussed as are experimental results from the DOE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses results from a highly interdisciplinary research project which investigated different packaging options for ultra-fine pitch, low temperature and low cost flip-chip assembly. Isotropic Conductive Adhesives (ICAs) are stencil printed to form the interconnects for the package. ICAs are utilized to ensure a low temperature assembly process of flip-chip copper column bumped packages. Results are presented on the structural integrity of novel electroformed stencils. ICA deposits at sub-100 micron pitch and the subsequent thermo-mechanical behaviour of the flip-chip ICA joints are analysed using numerical modelling techniques. Optimal design rules for enhanced performance and thermomechanical reliability of ICA assembled flip-chip packages are formulated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of integrating computational mechanics (FEA and CFD) and optimization tools is to speed up dramatically the design process in different application areas concerning reliability in electronic packaging. Design engineers in the electronics manufacturing sector may use these tools to predict key design parameters and configurations (i.e. material properties, product dimensions, design at PCB level. etc) that will guarantee the required product performance. In this paper a modeling strategy coupling computational mechanics techniques with numerical optimization is presented and demonstrated with two problems. The integrated modeling framework is obtained by coupling the multi-physics analysis tool PHYSICA - with the numerical optimization package - Visua/DOC into a fuJly automated design tool for applications in electronic packaging. Thermo-mechanical simulations of solder creep deformations are presented to predict flip-chip reliability and life-time under thermal cycling. Also a thermal management design based on multi-physics analysis with coupled thermal-flow-stress modeling is discussed. The Response Surface Modeling Approach in conjunction with Design of Experiments statistical tools is demonstrated and used subsequently by the numerical optimization techniques as a part of this modeling framework. Predictions for reliable electronic assemblies are achieved in an efficient and systematic manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper details a modelling approach for assessing the in-service (field) reliability and thermal fatigue life-time of electronic package interconnects for components used in the assembly of an aerospace system. The Finite Element slice model of a Plastic Ball Grid Array (PBGA) package and suitable energy based damage models for crack length predictions are used in this study. Thermal fatigue damage induced in tin-lead solder joints are investigated by simulating the crack growth process under a set of prescribed field temperature profiles that cover the period of operational life. The overall crack length in the solder joint for all different thermal profiles and number of cycles for each profile is predicted using a superposition technique. The effect of using an underfill is also presented. A procedure for verifying the field lifetime predictions for the electronic package by using reliability assessment under Accelerated Thermal Cycle (ATC) testing is also briefly outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The newly formed Escape and Evacuation Naval Authority regulates the provision of abandonment equipment and procedures for all Ministry of Defence Vessels. As such, it assures that access routes on board are evaluated early in the design process to maximize their efficiency and to eliminate, as far as possible, any congestion that might occur during escape. This analysis can be undertaken using a computer-based simulation for given escape scenarios and replicates the layout of the vessel and the interactions between each individual and the ship structure. One such software tool that facilitates this type of analysis is maritimeEXODUS. This tool, through large scale testing and validation, emulates human shipboard behaviour during emergency scenarios; however it is largely based around the behaviour of civilian passengers and fixtures and fittings of merchant vessels. Hence there existed a clear requirement to understand the behaviour of well-trained naval personnel as opposed to civilian passengers and be able to model the fixtures and fittings that are exclusive to warships, thus allowing improvements to both maritimeEXODUS and other software products. Human factor trials using the Royal Navy training facilities at Whale Island, Portsmouth were recently undertaken to collect data that improves our understanding of the aforementioned differences. It is hoped that this data will form the basis of a long-term improvement package that will provide global validation of these simulation tools and assist in the development of specific Escape and Evacuation standards for warships. © 2005: Royal Institution of Naval Architects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on research work undertaken for the European Commission funded study GMA2/2000/32039 Very Large Transport Aircraft (VLTA) Emergency Requirements Research Evacuation Study (VERRES). A particular focus was on evacuation issues with a detailed study of evacuation performance using computer models being undertaken as part of Work Package 2. This paper describes this work and investigates the use of internal stairs during evacuation using computer simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on research work undertaken for the European Commission funded study GMA2/2000/32039 Very Large Transport Aircraft (VLTA) Emergency Requirements Research Evacuation Study (VERRES). A particular focus of VERRES was on evacuation issues and several large-scale evacuation trials were conducted in the CRANFIELD simulator. This paper addresses part of the research undertaken for Work Package 3 by the University of Greenwich with a focus on the analysis of the data concerning passenger use of stairs and passenger exit hesitation time analysis for upper deck slides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat is extracted away from an electronic package by convection, conduction, and/or radiation. The amount of heat extracted by forced convection using air is highly dependent on the characteristics of the airflow around the package which includes its velocity and direction. Turbulence in the air is also important and is required to be modeled accurately in thermal design codes that use computational fluid dynamics (CFD). During air cooling the flow can be classified as laminar, transitional, or turbulent. In electronics systems, the flow around the packages is usually in the transition region, which lies between laminar and turbulent flow. This requires a low-Reynolds number numerical model to fully capture the impact of turbulence on the fluid flow calculations. This paper provides comparisons between a number of turbulence models with experimental data. These models included the distance from the nearest wall and the local velocity (LVEL), Wolfshtein, Norris and Reynolds, k-ε, k-ω, shear-stress transport (SST), and kε/kl models. Results show that in terms of the fluid flow calculations most of the models capture the difficult wake recirculation region behind the package reasonably well, although for packages whose heights cause a high degree of recirculation behind the package the SST model appears to struggle. The paper also demonstrates the sensitivity of the models to changes in the mesh density; this study is aimed specifically at thermal design engineers as mesh independent simulations are rarely conducted in an industrial environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wide range of flip chip technologies with solder or adhesives have become dominant solutions for high density packaging applications due to the excellent electrical performance, high I/O density and good thermal performance. This paper discusses the use of modeling technique to predict the reliability of high density packaged flip chips in the humid environment. Reliability assessment is discussed for flip chip package at ultra-fine pitch with anisotropic conductive film (ACF). The purpose of this modeling work is to understand the role that moisture plays in the failure of ACF flip chips. A macro-micro 3D finite element modeling technique was used in order to make the multi-length-scale modeling of the ACF flip chip possible. Modeling results are consistent with the findings in the experimental work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the use of a blackboard architecture for building a hybrid case based reasoning (CBR) system. The Smartfire fire field modelling package has been built using this architecture and includes a CBR component. It allows the integration into the system of qualitative spatial reasoning knowledge from domain experts. The system can be used for the automatic set-up of fire field models. This enables fire safety practitioners who are not expert in modelling techniques to use a fire modelling tool. The paper discusses the integrating powers of the architecture, which is based on a common knowledge representation comprising a metric diagram and place vocabulary and mechanisms for adaptation and conflict resolution built on the Blackboard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem to be examined here is the fluctuating pressure distribution along the open cavity of the sun-roof at the top of a car compartment due to gusts passing over the sun-roof. The aim of this test is to investigate the capability of a typical commercial CFD package, PHOENICS, in recognising pressure fluctuations occurring in an important automotive industrial problem. In particular to examine the accuracy of transporting pulsatory gusts traveling along the main flow through the use of finite volume methods with higher order schemes in the numercial solutins of the unsteady compressible Navier-Stokes equations. The Helmholtz equation is used to solve the sound distribution inside the car compartment, resulting from the externally induced fluctuations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the assembly process using next generation electroformed stencils and Isotropic Conductive Adhesives (ICAs) as interconnection material. The utilisation of ICAs in flip-chip assembly process is investigated as an alternative to the lead and lead-free solder alloys and aims to ensure a low temperature (T < 100 °C) assembly process. The paper emphasizes and discusses in details the assembly of a flip-chip package based on copper columns bumped die and substrate with stencil printed ICA deposits at sub-100 μm pitch. A computational modelling approach is undertaken to provide comprehensive results on reliability trends of ICA joints subject to thermal cycling of the flip-chip assembly based on easy to use damage criteria and damage evaluation. Important design parameters in the package are selected and investigated using numerical modelling techniques to provide knowledge and understanding of their impact on the thermo-mechanical behaviour of the flip-chip ICA joints. Sensitivity analysis of the damage in the adhesive material is also carried out. Optimal design rules for enhanced performance and improved thermo-mechanical reliability of ICA assembled flip-chip packages are finally formulated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses an optimisation based decision support system and methodology for electronic packaging and product design and development which is capable of addressing in efficient manner specified environmental, reliability and cost requirements. A study which focuses on the design of a flip-chip package is presented. Different alternatives for the design of the flip-chip package are considered based on existing options for the applied underfill and volume of solder material used to form the interconnects. Variations in these design input parameters have simultaneous effect on package aspects such as cost, environmental impact and reliability. A decision system for the design of the flip-chip that uses numerical optimisation approach is used to identify the package optimal specification which satisfies the imposed requirements. The reliability aspect of interest is the fatigue of solder joints under thermal cycling. Transient nonlinear finite element analysis (FEA) is used to simulate the thermal fatigue damage in solder joints subject to thermal cycling. Simulation results are manipulated within design of experiments and response surface modelling framework to provide numerical model for reliability which can be used to quantify the package reliability. Assessment of the environmental impact of the package materials is performed by using so called Toxic Index (TI). In this paper we demonstrate the evaluation of the environmental impact only for underfill and lead-free solder materials. This evaluation is based on the amount of material per flip-chip package. Cost is the dominant factor in contemporary flip-chip packaging industry. In the optimisation based decision support system for the design of the flip-chip package, cost of materials which varies as a result of variations in the design parameters is considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Design for manufacture of system-in-package (SiP) structures is dependent on a number of physical processes that affect the final quality of the package in terms of its performance and reliability. Solder joints are key structures in a SiP and their behavior can be the critical factor in terms of reliability. This paper discusses the results from a research programme on design for manufacturing of system in package (SiP) technologies. The focus of the paper is on thermo-mechanical modelling of solder joints. This includes the behavior of the joints during testing plus some important insights into the reflow process and how physical phenomena taking place at the assembly stage can affect solder joint behavior. Finite element analysis of a numerical model of an SiP structure with various design parameters is discussed. The goal of this analysis is to identify the most promising combination of design parameters which guarantee longer lifetime of the solder joints and hence the SiP component. The parameters that were studied are the size of the package (i.e. number of solder joints per row), the presence of the underfill and/or the reinforcement as well as the thickness of the passive die. Discussion was also provided on phenomena that take place during the reflow process where the solder joints are formed. In particular, the formation of intermetallics at the solder-pad interfaces