21 resultados para Integrated Expert Systems
Resumo:
The factors that are driving the development and use of grids and grid computing, such as size, dynamic features, distribution and heterogeneity, are also pushing to the forefront service quality issues. These include performance, reliability and security. Although grid middleware can address some of these issues on a wider scale, it has also become imperative to ensure adequate service provision at local level. Load sharing in clusters can contribute to the provision of a high quality service, by exploiting both static and dynamic information. This paper is concerned with the presentation of a load sharing scheme, that can satisfy grid computing requirements. It follows a proactive, non preemptive and distributed approach. Load information is gathered continuously before it is needed, and a task is allocated to the most appropriate node for execution. Performance and reliability are enhanced by the decentralised nature of the scheme and the symmetric roles of the nodes. In addition, the scheme exhibits transparency characteristics that facilitate integration with the grid.
Resumo:
Many code generation tools exist to aid developers in carrying out common mappings, such as from Object to XML or from Object to relational database. Such generated code tends to possess a high binding between the Object code and the target mapping, making integration into a broader application tedious or even impossible. In this paper we suggest XML technologies and the multiple inheritance capabilities of interface based languages such as Java, offer a means to unify such executable specifications, thus building complete, consistent and useful object models declaratively, without sacrificing component flexibility.
Resumo:
The importance of patterns in constructing complex systems has long been recognised in other disciplines. In software engineering, for example, well-crafted object-oriented architectures contain several design patterns. Focusing on mechanisms of constructing software during system development can yield an architecture that is simpler, clearer and more understandable than if design patterns were ignored or not properly applied. In this paper, we propose a model that uses object-oriented design patterns to develop a core bitemporal conceptual model. We define three core design patterns that form a core bitemporal conceptual model of a typical bitemporal object. Our framework is known as the Bitemporal Object, State and Event Modelling Approach (BOSEMA) and the resulting core model is known as a Bitemporal Object, State and Event (BOSE) model. Using this approach, we demonstrate that we can enrich data modelling by using well known design patterns which can help designers to build complex models of bitemporal databases.
Resumo:
Many Web applications walk the thin line between the need for dynamic data and the need to meet user performance expectations. In environments where funds are not available to constantly upgrade hardware inline with user demand, alternative approaches need to be considered. This paper introduces a ‘Data farming’ model whereby dynamic data, which is ‘grown’ in operational applications, is ‘harvested’ and ‘packaged’ for various consumer markets. Like any well managed agricultural operation, crops are harvested according to historical and perceived demand as inferred by a self-optimising process. This approach aims to make enhanced use of available resources through better utlilisation of system downtime - thereby improving application performance and increasing the availability of key business data.
Resumo:
The anticipated rewards of adaptive approaches will only be fully realised when autonomic algorithms can take configuration and deployment decisions that match and exceed those of human engineers. Such decisions are typically characterised as being based on a foundation of experience and knowledge. In humans, these underpinnings are themselves founded on the ashes of failure, the exuberance of courage and (sometimes) the outrageousness of fortune. In this paper we describe an application framework that will allow the incorporation of similarly risky, error prone and downright dangerous software artefacts into live systems – without undermining the certainty of correctness at application level. We achieve this by introducing the notion of application dreaming.
Resumo:
SMARTFIRE, an open architecture integrated CFD code and knowledge based system attempts to make fire field modeling accessible to non-experts in Computational Fluid Dynamics (CFD) such as fire fighters, architects and fire safety engineers. This is achieved by embedding expert knowledge into CFD software. This enables the 'black-art' associated with the CFD analysis such as selection of solvers, relaxation parameters, convergence criteria, time steps, grid and boundary condition specification to be guided by expert advice from the software. The user is however given the option of overriding these decisions, thus retaining ultimate control. SMARTFIRE also makes use of recent developments in CFD technology such as unstructured meshes and group solvers in order to make the CFD analysis more efficient. This paper describes the incorporation within SMARTFIRE of the expert fire modeling knowledge required for automatic problem setup and mesh generation as well as the concept and use of group solvers for automatic and manual dynamic control of the CFD code.