18 resultados para Finite model searching
Resumo:
A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: a single mesh covering the entire domain, a Navier–Stokes flow, a single FV-UM discretisation approach for both the flow and solid mechanics procedures, an implicit predictor–corrector version of the Newmark algorithm, a single code embedding the whole strategy.
Resumo:
This paper presents a three dimensional, thermos-mechanical modelling approach to the cooling and solidification phases associated with the shape casting of metals ei. Die, sand and investment casting. Novel vortex-based Finite Volume (FV) methods are described and employed with regard to the small strain, non-linear Computational Solid Mechanics (CSM) capabilities required to model shape casting. The CSM capabilities include the non-linear material phenomena of creep and thermo-elasto-visco-plasticity at high temperatures and thermo-elasto-visco-plasticity at low temperatures and also multi body deformable contact with which can occur between the metal casting of the mould. The vortex-based FV methods, which can be readily applied to unstructured meshes, are included within a comprehensive FV modelling framework, PHYSICA. The additional heat transfer, by conduction and convection, filling, porosity and solidification algorithms existing within PHYSICA for the complete modelling of all shape casting process employ cell-centred FV methods. The termo-mechanical coupling is performed in a staggered incremental fashion, which addresses the possible gap formation between the component and the mould, and is ultimately validated against a variety of shape casting benchmarks.
Resumo:
The central product of the DRAMA (Dynamic Re-Allocation of Meshes for parallel Finite Element Applications) project is a library comprising a variety of tools for dynamic re-partitioning of unstructured Finite Element (FE) applications. The input to the DRAMA library is the computational mesh, and corresponding costs, partitioned into sub-domains. The core library functions then perform a parallel computation of a mesh re-allocation that will re-balance the costs based on the DRAMA cost model. We discuss the basic features of this cost model, which allows a general approach to load identification, modelling and imbalance minimisation. Results from crash simulations are presented which show the necessity for multi-phase/multi-constraint partitioning components.