22 resultados para Elasticity (Mechanics).


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large class of computational problems are characterised by frequent synchronisation, and computational requirements which change as a function of time. When such a problem is solved on a message passing multiprocessor machine [5], the combination of these characteristics leads to system performance which deteriorate in time. As the communication performance of parallel hardware steadily improves so load balance becomes a dominant factor in obtaining high parallel efficiency. Performance can be improved with periodic redistribution of computational load; however, redistribution can sometimes be very costly. We study the issue of deciding when to invoke a global load re-balancing mechanism. Such a decision policy must actively weigh the costs of remapping against the performance benefits, and should be general enough to apply automatically to a wide range of computations. This paper discusses a generic strategy for Dynamic Load Balancing (DLB) in unstructured mesh computational mechanics applications. The strategy is intended to handle varying levels of load changes throughout the run. The major issues involved in a generic dynamic load balancing scheme will be investigated together with techniques to automate the implementation of a dynamic load balancing mechanism within the Computer Aided Parallelisation Tools (CAPTools) environment, which is a semi-automatic tool for parallelisation of mesh based FORTRAN codes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The difficulties encountered in implementing large scale CM codes on multiprocessor systems are now fairly well understood. Despite the claims of shared memory architecture manufacturers to provide effective parallelizing compilers, these have not proved to be adequate for large or complex programs. Significant programmer effort is usually required to achieve reasonable parallel efficiencies on significant numbers of processors. The paradigm of Single Program Multi Data (SPMD) domain decomposition with message passing, where each processor runs the same code on a subdomain of the problem, communicating through exchange of messages, has for some time been demonstrated to provide the required level of efficiency, scalability, and portability across both shared and distributed memory systems, without the need to re-author the code into a new language or even to support differing message passing implementations. Extension of the methods into three dimensions has been enabled through the engineering of PHYSICA, a framework for supporting 3D, unstructured mesh and continuum mechanics modeling. In PHYSICA, six inspectors are used. Part of the challenge for automation of parallelization is being able to prove the equivalence of inspectors so that they can be merged into as few as possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is now clear that the concept of a HPC compiler which automatically produces highly efficient parallel implementations is a pipe-dream. Another route is to recognise from the outset that user information is required and to develop tools that embed user interaction in the transformation of code from scalar to parallel form, and then use conventional compilers with a set of communication calls. This represents the key idea underlying the development of the CAPTools software environment. The initial version of CAPTools is focused upon single block structured mesh computational mechanics codes. The capability for unstructured mesh codes is under test now and block structured meshes will be included next. The parallelisation process can be completed rapidly for modest codes and the parallel performance approaches that which is delivered by hand parallelisations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the complexity of parallel applications increase, the performance limitations resulting from computational load imbalance become dominant. Mapping the problem space to the processors in a parallel machine in a manner that balances the workload of each processors will typically reduce the run-time. In many cases the computation time required for a given calculation cannot be predetermined even at run-time and so static partition of the problem returns poor performance. For problems in which the computational load across the discretisation is dynamic and inhomogeneous, for example multi-physics problems involving fluid and solid mechanics with phase changes, the workload for a static subdomain will change over the course of a computation and cannot be estimated beforehand. For such applications the mapping of loads to process is required to change dynamically, at run-time in order to maintain reasonable efficiency. The issue of dynamic load balancing are examined in the context of PHYSICA, a three dimensional unstructured mesh multi-physics continuum mechanics computational modelling code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new dynamic load balancing technique for structured mesh computational mechanics codes in which the processor partition range limits of just one of the partitioned dimensions uses non-coincidental limits, as opposed to using coincidental limits in all of the partitioned dimensions. The partition range limits are 'staggered', allowing greater flexibility in obtaining a balanced load distribution in comparison to when the limits are changed 'globally'. as the load increase/decrease on one processor no longer restricts the load decrease/increase on a neighbouring processor. The automatic implementation of this 'staggered' load balancing strategy within an existing parallel code is presented in this paper, along with some preliminary results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract not available