36 resultados para Conductive wires


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wall-slip plays an important role in characterising the flow behaviour of solder paste materials. The wall slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry.These interactions could lead to the presence of a thin solvent layer adjacent to the wall, which gives rise to slippage. The wall slip effect can play an important role in ensure successfulpaste release after the printing process. Wall-slip plays animportant role in characterising the flow behaviour of solderpastes and isotropic conductive adhesives. The study investigates the wall-slip formation in solder paste andisotropic conductive adhesives using flow visualisation technique. The slip distance was measured for parallel plate with different surface roughness in order to quantify the wallslip formations in these paste materials. An ink marker line was drawn between the parallel plate and the free surface of the sample. The parallel was rotated slowly at a constant shear rate of 0.05 sec-1 and the displacement of the ink marker was observed using a video microscope and image capturing software was utilised to capture the displacement of ink marker. From this study, it was found that the wall-slip effect was evident in all the paste materials. In addition, the different surface roughness of the parallel plates did not prevent the formation of wall-slip. This study has revealed that the wallslip effect could used to understand the flow behaviour of the paste in the stencil printing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solder pastes and isotropic conductive adhesives (ICAs) are widely used as a principal bonding medium in the electronic industry. This study investigates the rheological behaviour of the pastes (solder paste and isotropic conductive adhesives) used for flip-chip assembly. Oscillatory stress sweep test are performed to evaluate solid characteristic and cohesiveness of the lead-free solder pastes and isotropic conductive adhesive paste materials. The results show that the G' (storage modulus) is higher than G '' (loss modulus) for the pastes material indicating a solid like behaviour. It result shows that the linear visco-elastic region for the pastes lies in a very small stress range, below 10 Pa. in addition, the stress at which the value of storage modulus is equal to that of loss modulus can be used as an indicator of the paste cohesiveness. The measured cross-over stress at G'=G '' shows that the solder paste has higher stress at G'=G '' compared to conductive adhesives. Creep-recovery test method is used to study the slump behaviour in the paste materials. The conductive adhesive paste shows a good recovery when compared to the solder pastes. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The printing of pastes (solder pastes and isotropic conductive adhesives) through very small stencil apertures required for flip-chip pitch sizes is expected to result in increased stencil clogging and incomplete transfer of paste to the printed circuit board pads. There is wide agreement in industry that the paste printing process accounts for the majority of assembly defects, and most defects originate from poor understanding of the effect of printing process parameters on printing performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally, before flip chips can be assembled the dies have to be attached with solder bumps. This process involves the deposition of metal layers on the Al pads on the dies and this is called the under bump metallurgy (UBM). In an alternative process, however, Copper (Cu) columns can be used to replace solder bumps and the UBM process may be omitted altogether. After the bumping process, the bumped dies can be assembled on to the printed circuit board (PCB) by using either solder or conductive adhesives. In this work, the reliability issues of flip chips with Cu column bumped dies have been studied. The flip chip lifetime associated with the solder fatigue failure has been modeled for a range of geometric parameters. The relative importance of these parameters is given and solder volume has been identified as the most important design parameter for long-term reliability. Another important problem that has been studied in this work is the dissolution of protection metals on the pad and Cu column in the reflow process. For small solder joints the amount of Cu which dissolves into the molten solder after the protection layers have worn out may significantly affect solder joint properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally, before flip chips can be assembled the dies have to be attached with solder bumps. This process involves the deposition of metal layers on the Al pads on the dies and this is called the under bump metallurgy (UBM). In an alternative process, however, Copper (Cu) columns can be used to replace solder bumps and the UBM process may be omitted altogether. After the bumping process, the bumped dies can be assembled on to the printed circuit board (PCB) by using either solder or conductive adhesives. In this work, the reliability issues of flip chips with Cu column bumped dies have been studied. The flip chip lifetime associated with the solder fatigue failure has been modeled for a range of geometric parameters. The relative importance of these parameters is given and solder volume has been identified as the most important design parameter for long-term reliability. Another important problem that has been studied in this work is the dissolution of protection metals on the pad and Cu column in the reflow process. For small solder joints the amount of Cu which dissolves into the molten solder after the protection layers have worn out may significantly affect solder joint properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents the latest print results at less than 100 microns pitch obtained in stencil printing type 6 and 7 lead-free solder pastes and conductive adhesives. The advantages of the microengineered stencil arc presented and compared with other bonding technologies. Characterisation of the print deposits is presented and future applications of stencil printing are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents the latest print results at less than 100 microns pitch obtained in stencil printing type 6 and 7 leadfree solder pastes and conductive adhesives. The advantages of the microengineered stencil are presented and compared with other bonding technologies. Characterisation of the print deposits is presented and future applications of stencil printing are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Induction heating is an efficient method used to melt electrically conductive materials, particularly if melting takes place in a ceramic crucible. This form of melting is particularly good for alloys, as electromagnetic forces set up by the induction coil lead to vigorous stirring of the melt ensuring homogeneity and uniformity in temperature. However, for certain reactive alloys, or where high purity is required, ceramic crucibles cannot be used, but a water-cooled segmented copper crucible is employed instead. Water cooling prevents meltdown or distortion of the metal wall, but much of the energy goes into the coolant. To reduce this loss, the electromagnetic force generated by the coil is used to push the melt away from the walls and so minimise contact with water-cooled surfaces. Even then, heat is lost through the crucible base where contact is inevitable. In a collaborative programme between Greenwich and Birmingham Universities, computer modelling has been used in conjunction with experiments to improve the superheat attainable in the melt for a,number of alloys, especially for y-TiAl intermetallics to cast aeroengine turbine blades. The model solves the discretised form of the turbulent Navier-Stokes, thermal energy conservation and Maxwell equations using a Spectral Collocation technique. The time-varying melt envelope is followed explicitly during the computation using an adaptive mesh. This paper briefly describes the mathematical model used to represent the interaction between the magnetic field, fluid flow, heat transfer and change of phase in the crucible and identifies the proportions of energy used in the melt, lost in the crucible base and in the crucible walls. The role of turbulence is highlighted as important in controlling heat losses and turbulence damping is introduced as a means of improving superheat. Model validation is against experimental results and shows good agreement with measured temperatures and energy losses in the cooling fluid throughout the melting cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose – Anisotropic conductive film (ACF) is now an attractive technology for direct mounting of chips onto the substrate as an alternative to lead-free solders. However, despite its various advantages over other technologies, it also has many unresolved reliability issues. For instance, the performance of ACF assembly in high temperature applications is questionable. The purpose of this paper is to study the effect of bonding temperatures on the curing of ACFs, and their mechanical and electrical performance after high temperature ageing. Design/methodology/approach – In the work presented in this paper, the curing degree of an ACF at different bonding temperatures was measured using a differential scanning calorimeter. The adhesion strength and the contact resistance of ACF bonded chip-on-flex assembly were measured before and after thermal ageing and the results were correlated with the curing degree of ACF. The ACF was an epoxy-based adhesive in which Au-Ni coated polymer particles were randomly dispersed. Findings – The results showed that higher bonding temperatures had resulted in better ACF curing and stronger adhesion. After ageing, the adhesion strength increased for the samples bonded at lower temperatures and decreased for the samples bonded at higher temperatures. ACF assemblies with higher degrees of curing showed smaller increases in contact resistance after ageing. Conduction gaps at the bump-particle and/or particle-pad interfaces were found with the help of scanning electron microscopy and are thought to be the root cause of the increase in contact resistance. Originality/value – The present study focuses on the effect of bonding temperatures on the curing of ACFs, and their adhesion strength and electrical performances after high temperature ageing. The results of this study may help the development of ACFs with higher heat resistance, so that ACFs can be considered as an alternative to lead-free solders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the performance of flexible substrates for lead-free applications was studied using finite element method (FEM). Firstly, the thermal induced stress in the flex substrate during the lead free solder reflow process was predicted. The shear stress at the interface between the copper track and flex was plotted. This shear stress increases with the thickness of the copper track. Secondly, an ACF flip chip was taken as a typical lead-free application of the flex substrate. The reflow effect on the reliability of ACF interconnections was analyzed. Higher stress was identified along the interface between the conductive particle and the metallization, and the interfacial stress increases with the reflow peak temperature and the coefficient of thermal expansion (CTE) of the adhesive. The moisture effect on the reliability of ACF joints were studied using a macro-micro modeling technique, the predominantly tensile stress found at the interface between the conductive particle and metallization could reduce the contact area and even cause the electrical failure. Modeling results are consistent with the findings in the experimental work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wide range of flip chip technologies with solder or adhesives have become dominant solutions for high density packaging applications due to the excellent electrical performance, high I/O density and good thermal performance. This paper discusses the use of modeling technique to predict the reliability of high density packaged flip chips in the humid environment. Reliability assessment is discussed for flip chip package at ultra-fine pitch with anisotropic conductive film (ACF). The purpose of this modeling work is to understand the role that moisture plays in the failure of ACF flip chips. A macro-micro 3D finite element modeling technique was used in order to make the multi-length-scale modeling of the ACF flip chip possible. Modeling results are consistent with the findings in the experimental work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electromagnetic levitation of electrically conductive droplets by alternating magnetic fields is a technique used to measure the physical properties of liquid metallic alloys such as surface tension or viscosity. Experiments can be conducted under terrestrial conditions or in microgravity, to reduce electromagnetic stirring and shaping of the droplet. Under such conditions, the time-dependent behaviour of a point of the free surface is recorded. Then the signal is analysed considering the droplet as a harmonic damped oscillator. We use a spectral code, for fluid flow and free surface descriptions, to check the validity of this assumption for two cases. First when the motion inside the droplet is generated by its initial distortion only and second, when the droplet is located in a uniform magnetic field originating far from the droplet. It is found that some deviations exist which can lead to an overestimate of the value of viscosity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose – This paper discusses the use of modelling techniques to predict the reliability of an anisotropic conductive film (ACF) flip chip in a humid environment. The purpose of this modelling work is to understand the role that moisture plays in the failure of ACF flip chips. Design/methodology/approach – A 3D macro-micro finite element modelling technique was used to determine the moisture diffusion and moisture-induced stresses inside the ACF flip chip. Findings – The results show that the ACF layer in the flip chip can be expected to be fully saturated with moisture after 3?h at 121°C, 100%RH, 2?atm test conditions. The swelling effect of the adhesive due to this moisture absorption causes predominately tensile stress at the interface between the adhesive and the metallization, which could cause a decrease in the contact area, and therefore an increase in the contact resistance. Originality/value – This paper introduces a macro-micro modelling technique which enables more detailed 3D modelling analysis of an ACF flip chip than previously.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of flexible substrates for lead-free applications was studied using finite element method (FEM). Firstly, the thermal induced stress in the flex substrate during the lead free solder reflow process was predicted. The shear stress at the interface between the copper track and flex was plotted. This shear stress increases with the thickness of the copper track and the thickness of the flex. Secondly, an anisotropic conductive film (ACF) flip chip was taken as a typical lead-free application of the flex substrate and the moisture effect on the reliability of ACF joints were studied using a 3D macro-micro modeling technique. It is found that the time to be saturated of an ACF flip chip is much dependent on the moisture diffusion rate in the polyimide substrate. The majority moisture diffuses into the ACF layer from the substrate side rather than the periphery of the ACF. The moisture induced stress was predicted and the predominant tensile stress was found at the interface between the conductive particle and metallization which could reduce the contact area and even cause the electrical failure

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of a packaging process based on the stencil printing of isotropic conductive adhesives (ICAs) that form the interconnections of flip-chip bonded electronic packages. Ultra-fine pitch (sub-100-mum), low temperature (100degC), and low cost flip-chip assembly is demonstrated. The article details recent advances in electroformed stencil manufacturing that use microengineering techniques to enable stencil fabrication at apertures sizes down to 20mum and pitches as small as 30mum. The current state of the art for stencil printing of ICAs and solder paste is limited between 150-mum and 200-mum pitch. The ICAs-based interconnects considered in this article have been stencil printed successfully down to 50-mum pitch with consistent printing demonstrated at 90-mum pitch size. The structural integrity or the stencil after framing and printing is also investigated through experimentation and computational modeling. The assembly of a flip-chip package based on copper column bumped die and ICA deposits stencil printed at sub-100-mum pitch is described. Computational fluid dynamics modeling of the print performance provides an indicator on the optimum print parameters. Finally, an organic light emitting diode display chip is packaged using this assembly process