29 resultados para Code optimization
Resumo:
This paper will discuss Computational Fluid Dynamics (CFD) results from an investigation into the accuracy of several turbulence models to predict air cooling for electronic packages and systems. Also new transitional turbulence models will be proposed with emphasis on hybrid techniques that use the k-ε model at an appropriate distance away from the wall and suitable models, with wall functions, near wall regions. A major proportion of heat emitted from electronic packages can be extracted by air cooling. This flow of air throughout an electronic system and the heat extracted is highly dependent on the nature of turbulence present in the flow. The use of CFD for such investigations is fast becoming a powerful and almost essential tool for the design, development and optimization of engineering applications. However turbulence models remain a key issue when tackling such flow phenomena. The reliability of CFD analysis depends heavily on the turbulence model employed together with the wall functions implemented. In order to resolve the abrupt fluctuations experienced by the turbulent energy and other parameters located at near wall regions and shear layers a particularly fine computational mesh is necessary which inevitably increases the computer storage and run-time requirements. The PHYSICA Finite Volume code was used for this investigation. With the exception of the k-ε and k-ω models which are available as standard within PHYSICA, all other turbulence models mentioned were implemented via the source code by the authors. The LVEL, LVEL CAP, Wolfshtein, k-ε, k-ω, SST and kε/kl models are described and compared with experimental data.
Resumo:
Despite the apparent simplicity of the OpenMP directive shared memory programming model and the sophisticated dependence analysis and code generation capabilities of the ParaWise/CAPO tools, experience shows that a level of expertise is required to produce efficient parallel code. In a real world application the investigation of a single loop in a generated parallel code can soon become an in-depth inspection of numerous dependencies in many routines. The additional understanding of dependencies is also needed to effectively interpret the information provided and supply the required feedback. The ParaWise Expert Assistant has been developed to automate this investigation and present questions to the user about, and in the context of, their application code. In this paper, we demonstrate that knowledge of dependence information and OpenMP are no longer essential to produce efficient parallel code with the Expert Assistant. It is hoped that this will enable a far wider audience to use the tools and subsequently, exploit the benefits of large parallel systems.
Resumo:
The problem to be examined here is the fluctuating pressure distribution along the open cavity of the sun-roof at the top of a car compartment due to gusts passing over the sun-roof. The aim of this test is to investigate the capability of a typical commercial CFD package, PHOENICS, in recognising pressure fluctuations occurring in an important automotive industrial problem. In particular to examine the accuracy of transporting pulsatory gusts traveling along the main flow through the use of finite volume methods with higher order schemes in the numercial solutins of the unsteady compressible Navier-Stokes equations. The Helmholtz equation is used to solve the sound distribution inside the car compartment, resulting from the externally induced fluctuations.
Resumo:
The parallelization of real-world compute intensive Fortran application codes is generally not a trivial task. If the time to complete the parallelization is to be significantly reduced then an environment is needed that will assist the programmer in the various tasks of code parallelization. In this paper the authors present a code parallelization environment where a number of tools that address the main tasks such as code parallelization, debugging and optimization are available. The ParaWise and CAPO parallelization tools are discussed which enable the near automatic parallelization of real-world scientific application codes for shared and distributed memory-based parallel systems. As user involvement in the parallelization process can introduce errors, a relative debugging tool (P2d2) is also available and can be used to perform nearly automatic relative debugging of a program that has been parallelized using the tools. A high quality interprocedural dependence analysis as well as user-tool interaction are also highlighted and are vital to the generation of efficient parallel code and in the optimization of the backtracking and speculation process used in relative debugging. Results of benchmark and real-world application codes parallelized are presented and show the benefits of using the environment
Resumo:
We consider a variety of preemptive scheduling problems with controllable processing times on a single machine and on identical/uniform parallel machines, where the objective is to minimize the total compression cost. In this paper, we propose fast divide-and-conquer algorithms for these scheduling problems. Our approach is based on the observation that each scheduling problem we discuss can be formulated as a polymatroid optimization problem. We develop a novel divide-and-conquer technique for the polymatroid optimization problem and then apply it to each scheduling problem. We show that each scheduling problem can be solved in $ \O({\rm T}_{\rm feas}(n) \times\log n)$ time by using our divide-and-conquer technique, where n is the number of jobs and Tfeas(n) denotes the time complexity of the corresponding feasible scheduling problem with n jobs. This approach yields faster algorithms for most of the scheduling problems discussed in this paper.
Resumo:
A physically open, but electrically shielded, microwave open oven can be produced by virtue of the evanescent fields in a waveguide below cutoff. The below cutoff heating chamber is fed by a transverse magnetic resonance established in a dielectric-filled section of the waveguide exploiting continuity of normal electric flux. In order to optimize the fields and the performance of the oven, a thin layer of a dielectric material with higher permittivity is inserted at the interface. Analysis and synthesis of an optimized open oven predicts field enhancement in the heating chamber up to 9.4 dB. Results from experimental testing on two fabricated prototypes are in agreement with the simulated predictions, and demonstrate an up to tenfold improvement in the heating performance. The open-ended oven allows for simultaneous precision alignment, testing, and efficient curing of microelectronic devices, significantly increasing productivity gains.
Resumo:
This paper presents modelling and design optimization of a microfeeder which, as part of a microassembly system, is used for contactless object delivery. The microfeeder consists of an array of microactuators which are controlled by electrostatic actuation and used for maneuvering outcoming air jet for object hovering and delibery. The airflow behaviour in the microactuator is analysed by means of fluid mechanics and Computational Fluid Dynamics (CFD) simulation from three aspects, theoretical analysis, initial design assessment, and design modifications. The focus is put on the basic types of the microfeeder structure and the effects of structural details to the systematic performance. The structural pattern of the microactuator for forming airflow nozzle is identified and two design plans are proposed as basic structure patterns of pneumatic microactuators. The optimized design numerically shows the ability of delivering objects. This paper analyses the flow distribution pattern in microactuators and points out a way for effective design of pneumatic microfeeder systems. The optimization strategy provided by the present paper has close relevance to the design and manufacture of pneumatic microfeeder systems.
Resumo:
This paper presents an analysis of biofluid behavior in a T-shaped microchannel device and a design optimization for improved biofluid performance in terms of particle liquid separation. The biofluid is modeled with single phase shear rate non-Newtonian flow with blood property. The separation of red blood cell from plasma is evident based on biofluid distribution in the microchannels against various relevant effects and findings, including Zweifach-Fung bifurcation law, Fahraeus effect, Fahraeus-Lindqvist effect and cell free phenomenon. The modeling with the initial device shows that this T-microchannel device can separate red blood cell from plasma but the separation efficiency among different bifurcations varies largely. In accordance with the imbalanced performance, a design optimization is conducted. This includes implementing a series of simulations to investigate the effect of the lengths of the main and branch channels to biofluid behavior and searching an improved design with optimal separation performance. It is found that changing relative lengths of branch channels is effective to both uniformity of flow rate ratio among bifurcations and reduction of difference of the flow velocities between the branch channels, whereas extending the length of the main channel from bifurcation region is only effective for uniformity of flow rate ratio.
Resumo:
A zone based systems design framework is described and utilised in the implementation of a message authentication code (MAC) algorithm based on symmetric key block ciphers. The resulting block cipher based MAC algorithm may be used to provide assurance of the authenticity and, hence, the integrity of binary data. Using software simulation to benchmark against the de facto cipher block chaining MAC (CBC-MAC) variant used in the TinySec security protocol for wireless sensor networks and the NIST cipher block chaining MAC standard, CMAC; we show that our zone based systems design framework can lead to block cipher based MAC constructs that point to improvements in message processing efficiency, processing throughput and processing latency.
Resumo:
An innovative methodology has been used for the formulation development of Cyclosporine A (CyA) nanoparticles. In the present study the static mixer technique, which is a novel method for producing nanoparticles, was employed. The formulation optimum was calculated by the modified Shepard's method (MSM), an advanced data analysis technique not adopted so far in pharmaceutical applications. Controlled precipitation was achieved injecting the organic CyA solution rapidly into an aqueous protective solution by means of a static mixer. Furthermore the computer based MSM was implemented for data analysis, visualization, and application development. For the optimization studies, the gelatin/lipoid S75 amounts and the organic/aqueous phase were selected as independent variables while the obtained particle size as a dependent variable. The optimum predicted formulation was characterized by cryo-TEM microscopy, particle size measurements, stability, and in vitro release. The produced nanoparticles contain drug in amorphous state and decreased amounts of stabilizing agents. The dissolution rate of the lyophilized powder was significantly enhanced in the first 2 h. MSM was proved capable to interpret in detail and to predict with high accuracy the optimum formulation. The mixer technique was proved capable to develop CyA nanoparticulate formulations.
Radio propagation modeling for capacity optimization in wireless relay MIMO systems with partial CSI
Resumo:
The enormous growth of wireless communication systems makes it important to evaluate the capacity of such channels. Multiple Input Multiple Output (MIMO) wireless communication systems are shown to yield significant performance improvement to data rates when compared to the traditional Single Input Single Output (SISO) wireless systems. The benefits of multiple antenna elements at the transmitter and receiver have become necessary to the research and the development of the next generation of mobile communication systems. In this paper we propose the use of Relaying MIMO wireless communication systems for use over long throughput. We investigate how Relays can be used in a "demodulate-and-forward" operation when the transmitter is equipped with spatially correlated multiple antenna elements and the receiver has only partial knowledge of the statistics of the channel. We show that Relays between the source and destination nodes of a wireless communication system in MIMO configuration improve the throughput of the system when compared to the typical MIMO systems, or achieve the desired channel capacity with significantly lower power resources needed.