388 resultados para Computer software reusability
Resumo:
The objective of this work is to present a new scheme for temperature-solute coupling in a solidification model, where the temperature and concentration fields simultaneously satisfy the macro-scale transport equations and, in the mushy region, meet the constraints imposed by the thermodynamics and the local scale processes. A step-by-step explanation of the macrosegregation algorithm, implemented in the finite volume unstructured mesh multi-physics modelling code PHYSICA, is initially presented and then the proposed scheme is validated against experimental results obtained by Krane for binary and a ternary alloys.
Resumo:
The first phase in the sign, development and implementation of a comprehensive computational model of a copper stockpile leach process is presented. The model accounts for transport phenomena through the stockpile, reaction kinetics for the important mineral species, oxgen and bacterial effects on the leach reactions, plus heat, energy and acid balances for the overall leach process. The paper describes the formulation of the leach process model and its implementation in PHYSICA+, a computational fluid dynamic (CFD) software environment. The model draws on a number of phenomena to represent the competing physical and chemical features active in the process model. The phenomena are essentially represented by a three-phased (solid liquid gas) multi-component transport system; novel algorithms and procedures are required to solve the model equations, including a methodology for dealing with multiple chemical species with different reaction rates in ore represented by multiple particle size fractions. Some initial validation results and application simulations are shown to illustrate the potential of the model.
Resumo:
The design and development of a comprehensive computational model of a copper stockpile leach process is summarized. The computational fluid dynamic software framework PHYSICA+ and various phenomena were used to model transport phenomena, mineral reaction kinetics, bacterial effects, and heat, energy and acid balances for the overall leach process. In this paper, the performance of the model is investigated, in particular its sensitvity to particle size and ore permeability. A combination of literature and laboratory sources was used to parameterize the model. The simulation results from the leach model are compared with closely controlled column pilot scale tests. The main performance characteristics (e.g. copper recovery rate) predicted by the model compare reasonably well with the experimental data and clearly reflect the qualitiative behavior of the process in many respects. The model is used to provide a measure of the sensitivity of ore permeability on leach behavior, and simulation results are examined for several different particle size distributions.
Resumo:
Using Acoustic Emission Testing (AET) to determine the onset of paper damage will be demonstrated on tensile coupons made from mechanical pulp. This technique is part of an EU funded project named the Fifth Frame Program. Its aim is to develop methods for determining specific damage mechanisms through AET. Various such techniques of damage detection will be demonstrated in the coming work.
Resumo:
A survey of teaching and assessment methods employed in UK Higher Education programmes for Human-Computer Interaction (HCI) courses was conducted in April 2003. The findings from this survey are presented, and conclusions drawn.
Resumo:
In this work we show how automatic relative debugging can be used to find differences in computation between a correct serial program and an OpenMP parallel version of that program that does not yield correct results. Backtracking and re-execution are used to determine the first OpenMP parallel region that produces a difference in computation that may lead to an incorrect value the user has indicated. Our approach also lends itself to finding differences between parallel computations, where executing with M threads produces expected results but an N thread execution does not (M, N > 1, M ≠ N). OpenMP programs created using a parallelization tool are addressed by utilizing static analysis and directive information from the tool. Hand-parallelized programs, where OpenMP directives are inserted by the user, are addressed by performing data dependence and directive analysis.
Resumo:
This paper, a 2-D non-linear electric arc-welding problem is considered. It is assumed that the moving arc generates an unknown quantity of energy which makes the problem an inverse problem with an unknown source. Robust algorithms to solve such problems e#ciently, and in certain circumstances in real-time, are of great technological and industrial interest. There are other types of inverse problems which involve inverse determination of heat conductivity or material properties [CDJ63][TE98], inverse problems in material cutting [ILPP98], and retrieval of parameters containing discontinuities [IK90]. As in the metal cutting problem, the temperature of a very hot surface is required and it relies on the use of thermocouples. Here, the solution scheme requires temperature measurements lied in the neighbourhood of the weld line in order to retrieve the unknown heat source. The size of this neighbourhood is not considered in this paper, but rather a domain decomposition concept is presented and an examination of the accuracy of the retrieved source are presented. This paper is organised as follows. The inverse problem is formulated and a method for the source retrieval is presented in the second section. The source retrieval method is based on an extension of the 1-D source retrieval method as proposed in [ILP].
Resumo:
Solidification and melting processes involve a range of physical phenomena and their interactions (i.e., multiphysics). Computational modeling of such processes presents a significant challenge, both in representing the physics involved and in handling the resulting coupled behavior. Two methods for the computational modeling of multiphysics processes in complex geometries are highlighted in the context of four challenging applications
Resumo:
The future success of many electronics companies will depend to a large extent on their ability to initiate techniques that bring schedules, performance, tests, support, production, life-cycle-costs, reliability prediction and quality control into the earliest stages of the product creation process. Earlier papers have discussed the benefits of an integrated analysis environment for system-level thermal, stress and EMC prediction. This paper focuses on developments made to the stress analysis module and presents results obtained for an SMT resistor. Lifetime predictions are made using the Coffin-Manson equation. Comparison with the creep strain energy based models of Darveaux (1997) shows the shear strain based method to underestimate the solder joint life. Conclusions are also made about the capabilities of both approaches to predict the qualitative and quantitative impact of design changes.
Resumo:
The use of computational modelling in examining process engineering issues is very powerful. It has been used in the development of the HIsmelt process from its concept. It is desirable to further water-cool the HIsmelt vessel to reduce downtime for replacing refractory. Water-cooled elements close to a metal bath run the risk of failure. This generally occurs when a process perturbation causes the freeze and refractory layers to come away from the water-cooled element, which is then exposed to liquid metal. The element fails as they are unable to remove all the heat. Modelling of the water-cooled element involves modelling the heat transfer, fluid flow, stress and solidification for a localised section of the reaction vessel. The complex interaction between the liquid slag and the refractory applied to the outside of thewater-cooled element is also being examined to model the wear of this layer. The model is being constructed in Physica, a CFD code developed at the University of Greenwich. Modelling of this system has commenced with modelling solidification test cases. These test cases have been used to validate the CFD code’s capability to model the solidification in this system. A model to track the penetration of slag into refractory has also been developed and tested.