388 resultados para computer software


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Products manufactured by the electronics sector are having a major impact in telecommunications, transportation space applications, biomedical applications, consumer products, intelligent hand held devices, and of course,the computer. Demands from end-users in terms of greater product functionality, adoption of environmentally friendly materials, and further miniaturization continually pose several challenges to electronics companies. In the context of electronic product design and manufacture, virtual prototying software tools are allowing companies to dramatically reduce the number of phsysical prototypes and design iterations required in product development and hence reduce costs and time to market. This paper details of the trends in these technolgies and provides an example of their use for flip-chip assembly technology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper demonstrates a modeling and design approach that couples computational mechanics techniques with numerical optimisation and statistical models for virtual prototyping and testing in different application areas concerning reliability of eletronic packages. The integrated software modules provide a design engineer in the electronic manufacturing sector with fast design and process solutions by optimizing key parameters and taking into account complexity of certain operational conditions. The integrated modeling framework is obtained by coupling the multi-phsyics finite element framework - PHYSICA - with the numerical optimisation tool - VisualDOC into a fully automated design tool for solutions of electronic packaging problems. Response Surface Modeling Methodolgy and Design of Experiments statistical tools plus numerical optimisaiton techniques are demonstrated as a part of the modeling framework. Two different problems are discussed and solved using the integrated numerical FEM-Optimisation tool. First, an example of thermal management of an electronic package on a board is illustrated. Location of the device is optimized to ensure reduced junction temperature and stress in the die subject to certain cooling air profile and other heat dissipating active components. In the second example thermo-mechanical simulations of solder creep deformations are presented to predict flip-chip reliability and subsequently used to optimise the life-time of solder interconnects under thermal cycling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experiments as well as computer modeling methods have been used to investigate the effect of the solder reflow process on the electrical characteristics and reliability of anisotropic conductive film (ACF) interconnections. In the experiments, the contact resistance of the ACF interconnections was found to increase after a subsequent reflow and the magnitude of this increase was strongly correlated to the peak temperature of the reflow profile. In fact, nearly 40 percent of the joints were opened (i.e. lifted away from the pad) after the reflow with a peak temperature of 260 OC while no openings was observed when the peak temperature was 210 "C. It is believed that the CTE mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. To understand this phenomenon better, a 3-D model of an ACF joint structure was built and Finite Element Analysis was used to predict the stress distrihution in the conductive particles, adhesive matrix and metal pads during the reflow process. The effects of the peak temperature, the CTE of the adhesive matrix and the bump height on the reliability of the ACF interconnections were discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reliability of electronic parts is a major concern for many manufacturers, since early failures in the field can cost an enormous amount to repair - in many cases far more than the original cost of the product. A great deal of effort is expended by manufacturers to determine the failure rates for a process or the fraction of parts that will fail in a period of time. It is widely recognized that the traditional approach to reliability predictions for electronic systems are not suitable for today's products. This approach, based on statistical methods only, does not address the physics governing the failure mechanisms in electronic systems. This paper discusses virtual prototyping technologies which can predict the physics taking place and relate this to appropriate failure mechanisms. Simulation results illustrate the effect of temperature on the assembly process of an electronic package and the lifetime of a flip-chip package.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditionally, before flip chips can be assembled the dies have to be attached with solder bumps. This process involves the deposition of metal layers on the Al pads on the dies and this is called the under bump metallurgy (UBM). In an alternative process, however, Copper (Cu) columns can be used to replace solder bumps and the UBM process may be omitted altogether. After the bumping process, the bumped dies can be assembled on to the printed circuit board (PCB) by using either solder or conductive adhesives. In this work, the reliability issues of flip chips with Cu column bumped dies have been studied. The flip chip lifetime associated with the solder fatigue failure has been modeled for a range of geometric parameters. The relative importance of these parameters is given and solder volume has been identified as the most important design parameter for long-term reliability. Another important problem that has been studied in this work is the dissolution of protection metals on the pad and Cu column in the reflow process. For small solder joints the amount of Cu which dissolves into the molten solder after the protection layers have worn out may significantly affect solder joint properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents simulated computational fluid dynamics (CFD) results for comparison against experimental data. The performance of four turbulence models has been assessed for electronic application areas considering both fluid flow and heat transfer phenomenon. CFD is vast becoming a powerful and almost essential tool for design, development and optimization in engineering problems. However turbulence models remain to be the key problem issue when tackling such flow phenomena. The reliability of CFD analysis depends heavily on the performance of the turbulence model employed together with the wall functions implemented. To be able to resolve the abrupt changes in the turbulent energy and other parameters near the wall a particularly fine mesh is necessary which unfortunately increases the computer storage capacity requirements. The objective of turbulence modelling is to enhance computational procdures of sufficient acccuracy and generality for engineers to anticipate the Reynolds stresses and the scalar transport terms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dr Fuchen Jia, Dr Mayer Patel and Professor Edwin Galea explain how advanced fire models were used to unravel the secrets of Swissair Flight 111, which crashed off the coast of Canada in 1998.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Professor Ed Galea CEng, MIFireE provides a welcome to Pedestrian and Evacuation Dynamics 2003, (PED 2003) to be held in London on 20-22 August 2003.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

H. Jiang, S. Gwynne, E.R. Galea, P. Lawrence, F. Jia and H. Ingason model a disco fire in Gothenburg, Sweden to compare the simulation’s predictions with actual events

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, the implementation of safer and more rigorous certification criteria, in cabin crew training and post-mortem accident investigation. As the risk of personal injury and the costs involved in performing full-scale certification trials are high, the development and use of these evacuation modelling tools are essential. Furthermore, evacuation models provide insight into the evacuation process that is impossible to derive from a single certification trial. The airEXODUS evacuation model has been under development since 1989 with support from the UK CAA and the aviation industry. In addition to describing the capabilities of the airEXODUS evacuation model, this paper describes the findings of a recent CAA project aimed at investigating model accuracy in predicting past certification trials. Furthermore, airEXODUS is used to examine issues related to the Blended Wing Body (BWB) and Very Large Transport Aircraft (VLTA). These radical new aircraft concepts pose considerable challenges to designers, operators and certification authorities. BWB concepts involving one or two decks with possibly four or more aisles offer even greater challenges. Can the largest exits currently available cope with passenger flow arising from four or five aisles? Do we need to consider new concepts in exit design? Should the main aisle be made wider to accommodate more passengers? In this paper we discuss various issues evacuation related issues associated VLTA and BWB aircraft and demonstrate how computer based evacuation models can be used to investigage these issues through examination of aisle/exit configurations for BWB cabin layouts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes recent developments with the Aircraft Accident Statistics and Knowledge (AASK) database. The AASK database is a repository of survivor accounts from aviation accidents developed by the Fire Safety Engineering Group of the University of Greenwich with support from the UK CAA. Its main purpose is to store observational and anecdotal data from the actual interviews of the occupants involved in aircraft accidents. Access to the latest version of the database (AASK V3.0) is available over the Internet. AASK consists of information derived from both passenger and cabin crew interviews, information concerning fatalities and basic accident details. Also provided with AASK is the Seat Plan Viewer that graphically displays the starting locations of all the passengers - both survivors and fatalities - as well as the exits used by the survivors. Data entered into the AASK database is extracted from the transcripts supplied by the National Transportation Safety Board in the US and the Air Accident Investigation Branch in the UK. The quality and quantity of the data was very variable ranging from short summary reports of the accidents to boxes of individual accounts from passengers, crew and investigators. Data imported into AASK V3.0 includes information from 55 accidents and individual accounts from 1295 passengers and 110 crew.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents data relating to occupant pre-evacuation times from a university and a hospital outpatient facility. Although the two structures are entirely different they do employ relatively similar procedures: members of staff sweeping areas of the structure to encourage individuals to evacuate. However, the manner in which the dependent population reacts to these procedures is quite different. In the hospital case the patients only evacuated once a member of the nursing staff had instructed them to do so while in the university evacuation the students were less dependent upon the actions of the staff with over 50% of them evacuating with no prior prompting. Although this data may be useful in a variety of areas, it was collected primarily for use within evacuation models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, flow in elastic pipes and blood vessels and extrusion of metals through dies. However a comprehensive computational model of these multi-physics phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply even to the extent in metal forming, for example, that the deformation of the die is totally ignored. More recently, strategies for solving the full coupling between the fluid and soild mechanics behaviour have developed. Conventionally, the computational modelling of fluid structure interaction is problematical since computational fluid dynamics (CFD) is solved using finite volume (FV) methods and computational structural mechanics (CSM) is based entirely on finite element (FE) methods. In the past the concurrent, but rather disparate, development paths for the finite element and finite volume methods have resulted in numerical software tools for CFD and CSM that are different in almost every respect. Hence, progress is frustrated in modelling the emerging multi-physics problem of fluid structure interaction in a consistent manner. Unless the fluid-structure coupling is either one way, very weak or both, transferring and filtering data from one mesh and solution procedure to another may lead to significant problems in computational convergence. Using a novel three phase technique the full interaction between the fluid and the dynamic structural response are represented. The procedure is demonstrated on some challenging applications in complex three dimensional geometries involving aircraft flutter, metal forming and blood flow in arteries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

FEA and CFD analysis is becoming ever more complex with an emerging demand for simulation software technologies that can address ranges of problems that involve combinations of interactions amongst varying physical phenomena over a variety of time and length scales. Computation modelling of such problems requires software technologies that enable the representation of these complex suites of 'physical' interactions. This functionality requires the structuring of simulation modules for specific physical phemonmena so that the coupling can be effectiely represented. These 'multi-physics' and 'multi-scale' computations are very compute intensive and so the simulation software must operate effectively in parallel if it is to be used in this context. Of course the objective of 'multi-physics' and 'multi-scale' simulation is the optimal design of engineered systems so optimistation is an important feature of such classes of simulation. In this presentation, a multi-disciplinary approach to simulation based optimisation is described with some key examples of application to challenging engineering problems.