168 resultados para Álgebra TK
Resumo:
This report examines the level of debt of ENEL and how that will be impacted by its plans for new nuclear power plants.
Resumo:
It has been shown that remote monitoring of pulmonary activity can be achieved using ultra-wideband (UWB) systems, which shows promise in home healthcare, rescue, and security applications. In this paper, we first present a multi-ray propagation model for UWB signal, which is traveling through the human thorax and is reflected on the air/dry-skin/fat/muscle interfaces. A geometry-based statistical channel model is then developed for simulating the reception of UWB signals in the indoor propagation environment. This model enables replication of time-varying multipath profiles due to the displacement of a human chest. Subsequently, a UWB distributed cognitive radar system (UWB-DCRS) is developed for the robust detection of chest cavity motion and the accurate estimation of respiration rate. The analytical framework can serve as a basis in the planning and evaluation of future measurement programs. We also provide a case study on how the antenna beamwidth affects the estimation of respiration rate based on the proposed propagation models and system architecture
Resumo:
We explore the potential application of cognitive interrogator network (CIN) in remote monitoring of mobile subjects in domestic environments, where the ultra-wideband radio frequency identification (UWB-RFID) technique is considered for accurate source localization. We first present the CIN architecture in which the central base station (BS) continuously and intelligently customizes the illumination modes of the distributed transceivers in response to the systempsilas changing knowledge of the channel conditions and subject movements. Subsequently, the analytical results of the locating probability and time-of-arrival (TOA) estimation uncertainty for a large-scale CIN with randomly distributed interrogators are derived based upon the implemented cognitive intelligences. Finally, numerical examples are used to demonstrate the key effects of the proposed cognitions on the system performance
Resumo:
This paper studies the possibility of distinguishing between benign and malignant masses by exploiting the morphology-dependent temporal and spectral characteristics of their microwave backscatter response in ultra-wideband breast cancer detection. The spiculated border profiles of 2-D breast masses are generated by modifying the baseline elliptical rings based upon the irregularity of their peripheries. Furthermore, the single- and multilayer lesion models are used to characterize a distinct mass region followed by a sharp transition to background, and a blurred mass border exhibiting a gradual transition to background, respectively. Subsequently, the complex natural resonances (CNRs) of the backscatter microwave signature can be derived from the late-time target response and reveal diagnostically useful information. The fractional sequence CLEAN algorithm is proposed to estimate the lesions' delay intervals and identify the late-time responses. Finally, it is shown through numerical examples that the locations of dominant CNRs are dependent on the lesion morphologies, where 2-D computational breast phantoms with single and multiple lesions are investigated. The analysis is of potential use for discrimination between benign and malignant lesions, where the former usually possesses a better-defined, more compact shape as opposed to the latter.
Resumo:
Pulse design is investigated for time-reversal (TR) imaging as applied to ultrawideband (UWB) breast cancer detection. Earlier it has been shown that a suitably-designed UWB pulse may help to improve imaging performance for a single-tumor breast phantom with predetermined lesion properties. The current work considers the following more general and practical situations: presence of multiple malignancies with unknown tumor size and dielectric properties. Four pulse selection criteria are proposed with each focusing on one of the following aspects: eliminating signal clutter generated by tissue inhomogeneities, canceling mutual interference among tumors, improving image resolution, and suppressing artifacts created by sidelobe of the target response. By applying the proposed criteria, the shape parameters of UWB waveforms with desirable characteristics are identified through search of all the possible pulses. Simulation example using a numerical breast phantom, comprised of two tumors and structured clutter distribution, demonstrates the effectiveness of the proposed approach. Specifically, a tradeoff between the image resolution and signal-to-clutter contrast (SCC) is observed in terms of selection of the excitation waveforms.
Resumo:
This paper presents novel collaboration methods implemented using a centralized client/server product development integration architecture, and a decentralized peer-to-peer network for smaller and larger companies using open source solutions. The product development integration architecture has been developed for the integration of disparate technologies and software systems for the benefit of collaborative work teams in design and manufacturing. This will facilitate the communication of early design and product development within a distributed and collaborative environment. The novelty of this work is the introduction of an‘out-of-box’ concept which provides a standard framework and deploys this utilizing a proprietary state-of-the-art product lifecycle management system (PLM). The term ‘out-of-box’ means to modify the product development and business processes to suit the technologies rather than vice versa. The key business benefits of adopting such an approach are a rapidly reconfigurable network and minimal requirements for software customization to avoid systems instability
Resumo:
This paper identifies the need for a verification methodology for manufacturing knowledge in design support systems; and proposes a suitable methodology based on the concept of ontological commitment and the PSL ontology (ISO/CD18629). The use of the verification procedures within an overall system development methodology is examined, and an understanding of how various categories of manufacturing knowledge (typical to design support systems) map onto the PSL ontology is developed. This work is also supported by case study material from industrial situations, including the casting and machining of metallic components. The PSL ontology was found to support the verification of most categories of manufacturing knowledge, and was shown to be particularly suited to process planning representations. Additional concepts and verification procedures were however needed to verify relationships between products and manufacturing processes. Suitable representational concepts and verification procedures were therefore developed, and integrated into the proposed knowledge verification methodology.
Resumo:
Product knowledge support needs are compared in two companies with different production volumes and product complexity. Knowledge support requirements identified include: function, performance data, requirements data, common parts, regulatory guidelines and layout data. A process based data driven knowledge reuse method is evaluated in light of the identified product knowledge needs. The evaluation takes place through developing a pilot case with each company. It is found that the method provides more benefit to the high complexity design domain, in which a significant amount of work takes place at the conceptual design stages, relying on a conceptual product representation. There is not such a clear value proposition in a design environment whose main challenge is layout design and the application of standard parts and features. The method supports the requirement for conceptual product representation but does not fully support a standard parts library.
Resumo:
As the trend toward further miniaturisation of pocket and handheld consumer electronic products continues apace, the requirements for even smaller solder joints will continue. With further reductions in the size of solder joints, the reliability of solder joints will become more and more critical to the long-term performance of electronic products. Solder joints play an important role in electronics packaging, serving both as electrical interconnections between the components and the board, and as mechanical support for components. With world-wide legislation for the removal/reduction of lead and other hazardous materials from electrical and electronic products, the electronics manufacturing industry has been faced with an urgent search for new lead-free solder alloy systems and other solder alternatives. In order to achieve high volume, low cost production, the stencil printing process and subsequent wafer bumping of solder paste has become indispensable. There is wide agreement in industry that the paste printing process accounts for the majority of assembly defects, and most defects originate from poor understanding of the effect of printing process parameters on printing performance. The printing of ICAs and lead-free solder pastes through the very small stencil apertures required for flip chip applications was expected to result in increased stencil clogging and incomplete transfer of paste to the printed circuit pads. Paste release from the stencil apertures is dependent on the interaction between the solder paste, surface pad and aperture wall; including its shape. At these very narrow aperture sizes the paste rheology becomes crucial for consistent paste withdrawal because for smaller paste volumes surface tension effects become dominant over viscous flow. Successful aperture filling and release will greatly depend on the rheology of the paste material. Wall-slip plays an important role in characterising the flow behaviour of solder paste materials. The wall- slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry. These interactions could lead to the presence of a thin solvent layer adjacent to the wall, which gives rise to slippage. The wall slip effect can play an important role in ensuring successful paste release after the printing process. The aim of this study was to investigate the influence of the paste microstructure on slip formation for the paste materials (lead-free solder paste and isotropic conductive adhesives). The effect of surface roughness on the paste viscosity was investigated. It was also found that altering the surface roughness of the parallel plate measuring geometry did not significantly eliminate wall slip as was expected. But results indicate that the use of a relatively rough surface helps to increase paste adhesion to the plates, inducing structural breakdown of the paste. Most importantly, the study also demonstrated on how the wall slip formation in the paste material could be utilised for understanding of the paste microstructure and its flow behaviour
Resumo:
The printing of pastes (solder pastes and isotropic conductive adhesives) through very small stencil apertures required for flip-chip pitch sizes is expected to result in increased stencil clogging and incomplete transfer of paste to the printed circuit board pads. There is wide agreement in industry that the paste printing process accounts for the majority of assembly defects, and most defects originate from poor understanding of the effect of printing process parameters on printing performance.
Resumo:
Purpose – The purpose of this paper is to develop a quality control tool based on rheological test methods for solder paste and flux media. Design/methodology/approach – The rheological characterisation of solder pastes and flux media was carried out through the creep-recovery, thixotropy and viscosity test methods. A rheometer with a parallel plate measuring geometry of 40mm diameter and a gap height of 1mm was used to characterise the paste and associated flux media. Findings – The results from the study showed that the creep-recovery test can be used to study the deformation and recovery of the pastes, which can be used to understand the slump behaviour in solder pastes. In addition, the results from the thixotropic and viscosity test were unsuccessful in determining the differences in the rheological flow behaviour in the solder pastes and the flux medium samples. Research limitations/implications – More extensive rheological and printing testing is needed in order to correlate the findings from this study with the printing performance of the pastes. Practical implications – The rheological test method presented in the paper will provide important information for research and development, quality control and production staff to facilitate the manufacture of solder pastes and flux media. Originality/value – The paper explains how the rheological test can be used as a quality control tool to identify the suitability of a developmental solder paste and flux media used for the printing process.
Resumo:
The paper reports on the investigation of the rheological behaviour new lead-free solder pastes formulations for use in flip-chip assembly applications. The study is made up of three parts; namely the evaluation of the effect of plate geometry, the effect of temperature and processing environment and the effect of torsional frequencies on the rheological measurements. Different plate geometries and rheological tests were used to evaluate new formulations in terms of wall slip characteristics, linear viscoelastic region and shear thinning behaviour. A technique which combines the use of the creep-recovery and dynamic frequency sweep tests was used to further characterise the paste structure, rheological behaviour and the processing performance of the new paste formulations. The technique demonstrated in this study has wide utility for R & D personnel involved in new paste formulation, for implementing quality control procedures used in paste manufacture and packaging and for qualifying new flip-chip assembly lines
Resumo:
Stencil printing of solder pastes is a critical stage in the SMT assembly process as a high proportion of the solder-related defects can be attributed to this stage. As the trend towards product miniaturization continues, there is a greater need for better understanding of the rheological behaviour and printing performance of new paste formulations. This fundamental understanding is crucial for achieving the repeatable solder paste deposits from board-to-board and pad-to-pad required for more reliable solder interconnections. The paper concerns a study on the effect of ageing on the rheological characteristics and printing performance of new lead-free solder pastes formulations used for flip-chip assembly applications. The objective is to correlate the rheological characteristics of aged paste samples to their printing performance. The methodology developed can be used for bench-marking new lead-free paste formulations in terms of shelf life, the potential deterioration in rheological characteristics and their printing performance.
Radio propagation modeling for capacity optimization in wireless relay MIMO systems with partial CSI
Resumo:
The enormous growth of wireless communication systems makes it important to evaluate the capacity of such channels. Multiple Input Multiple Output (MIMO) wireless communication systems are shown to yield significant performance improvement to data rates when compared to the traditional Single Input Single Output (SISO) wireless systems. The benefits of multiple antenna elements at the transmitter and receiver have become necessary to the research and the development of the next generation of mobile communication systems. In this paper we propose the use of Relaying MIMO wireless communication systems for use over long throughput. We investigate how Relays can be used in a "demodulate-and-forward" operation when the transmitter is equipped with spatially correlated multiple antenna elements and the receiver has only partial knowledge of the statistics of the channel. We show that Relays between the source and destination nodes of a wireless communication system in MIMO configuration improve the throughput of the system when compared to the typical MIMO systems, or achieve the desired channel capacity with significantly lower power resources needed.