24 resultados para mechanical analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micro-electronic displays are sensitive devices and its performance is easily affected by external environmental factors. To enable the display to perform in extreme conditions, the device must be structurally strengthened, the effects of this packaging process was investigated. A thermo-mechanical finite element analysis was used to discover potential problems in the packaging process and to improve the overall design of the device. The main concern from the analysis predicted that displacement of the borosilicate glass and the Y stress of the adhesive are important. Using this information a design which reduced the variation of displacement and kept the stress to a minimum was suggested

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents modeling results about the performance of flexible substrates when subjected to higher lead-free reflow temperatures. Both adhesiveless and adhesive types of polyimide substrates were studied. Finite element (FE) models of flex substrates were built, two copper tracks located in the centre of the substrate was considered. The thermal induced shear stress in the flex substrate during the lead-free reflow process was studied and the effect of the design changes including the track thickness, flex thickness, and copper width were studied. For both types of flexes, the one of most important variables for minimizing damage to the substrate is the height of the copper tracks. The height of flex and the width of copper track show less impact. Beside of the geometry effects, the increase in reflow peak temperature can also result in a significant increase in the interfacial stress between the copper track and flex. Higher stresses were identified within the adhesive flex due to the big CTE mismatch between the copper and adhesive/dielectric

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The performance enhancement of AMLCD's has been hindered with problems encountered during the curing process, such as window framing and de-lamination of the glass and adhesive. A thermo-mechanical analysis using FEA was conducted to help optimise the design of the rugged display and enhance the optical performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The deployment of OECBs (opto-electrical circuit boards) is expected to make a significant impact in the telecomm switches arena within the next five years. This will create optical backplanes with high speed point-to-point optical interconnects. The crucial aspect in the manufacturing process of the optical backplane is the successful coupling between VCSEL (vertical cavity surface emitting laser) device and embedded waveguide in the OECB. The results from a thermo-mechanical analysis are being used in a purely optical model, which solves optical energy and attenuation from the VCSEL aperture into, and then through, the waveguide. Results from the modelling are being investigated using DOE analysis to identify packaging parameters that minimise misalignment. This is achieved via a specialist optimisation software package. Results from the thermomechanical and optical models are discussed as are experimental results from the DOE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using thermosetting epoxy based conductive adhesive films for the flip chip interconnect possess a great deal of attractions to the electronics manufacturing industries due to the ever increasing demands for miniaturized electronic products. Adhesive manufacturers have taken many attempts over the last decade to produce a number of types of adhesives and the coupled anisotropic conductive-nonconductive adhesive film is one of them. The successful formation of the flip chip interconnection using this particular type of adhesive depends on, among factors, how the physical properties of the adhesive changes during the bonding process. Experimental measurements of the temperature in the adhesive have revealed that the temperature becomes very close to the required maximum bonding temperature within the first 1s of the bonding time. The higher the bonding temperature the faster the ramp up of temperature is. A dynamic mechanical analysis (DMA) has been carried out to investigate the nature of the changes of the physical properties of the coupled anisotropic conductive-nonconductive adhesive film for a range of bonding parameters. Adhesive samples that are pre-cured at 170, 190 and 210°C for 3, 5 and 10s have been analyzed using a DMA instrument. The results have revealed that the glass transition temperature of this type of adhesive increases with the increase in the bonding time for the bonding temperatures that have been used in this work. For the curing time of 3 and 5s, the maximum glass transition temperature increases with the increase in the bonding temperature, but for the curing time of 10s the maximum glass transition temperature has been observed in the sample which is cured at 190°C. Based on these results it has been concluded that the optimal bonding temperature and time for this kind of adhesive are 190°C and 10s, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper will analyse two of the likely damage mechanisms present in a paper fibre matrix when placed under controlled stress conditions: fibre/fibre bond failure and fibre failure. The failure process associated with each damage mechanism will be presented in detail focusing on the change in mechanical and acoustic properties of the surrounding fibre structure before and after failure. To present this complex process mathematically, geometrically simple fibre arrangements will be chosen based on certain assumptions regarding the structure and strength of paper, to model the damage mechanisms. The fibre structures are then formulated in terms of a hybrid vibro-acoustic model based on a coupled mass/spring system and the pressure wave equation. The model will be presented in detail in the paper. The simulation of the simple fibre structures serves two purposes; it highlights the physical and acoustic differences of each damage mechanism before and after failure, and also shows the differences in the two damage mechanisms when compared with one another. The results of the simulations are given in the form of pressure wave contours, time-frequency graphs and the Continuous Wavelet Transform (CWT) diagrams. The analysis of the results leads to criteria by which the two damage mechanisms can be identified. Using these criteria it was possible to verify the results of the simulations against experimental acoustic data. The models developed in this study are of specific practical interest in the paper-making industry, where acoustic sensors may be used to monitor continuous paper production. The same techniques may be adopted more generally to correlate acoustic signals to damage mechanisms in other fibre-based structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A flip chip component is a silicon chip mounted to a substrate with the active area facing the substrate. This paper presents the results of an investigation into the relationship between a number of important material properties and geometric parameters on the thermal-mechanical fatigue reliability of a standard flip chip design and a flip chip design with the use of microvias. Computer modeling has been used to analyze the mechanical conditions of flip chips under cyclic thermal loading where the Coffin-Manson empirical relationship has been used to predict the life time of the solder interconnects. The material properties and geometry parameters that have been investigated are the Young's modulus, the coefficient of thermal expansion (CTE) of the underfill, the out-of-plane CTE (CTEz) of the substrate, the thickness of the substrate, and the standoff height. When these parameters vary, the predicted life-times are calculated and some of the features of the results are explained. By comparing the predicted lifetimes of the two designs and the strain conditions under thermal loading, the local CTE mismatch has been found to be one of most important factors in defining the reliability of flip chips with microvias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrolytic cell for Aluminum production contains molten metal subject to high currents and magnetic flux density. The interaction between these two fields creates electromagnetic forces within the liquid metal and can generate oscillations of the fluid similar to the waves at the free surface of oceans and rivers. The study of this phenomenon requires the simulation of the current density field, of the magnetic flux density field and the solution of the equations of motion of the liquid mass. An attempt to analyze the dynamical behavior of this problem is made by coupling different codes, based on different numerical techniques, in a single tool. The simulations are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cell-centred finite volume(CC-FV) solid mechanics formulation, based on a computational fluid dynamics(CFD) procedure, is presented. A CFD code is modified such that the velocity variable is used as to the displacement variable. Displacement and pressure fields are considered as unknown variables. The results are validated with finite element(FE) and cell-vertex finite volume(CV-FV) predictions based on discretisation of the equilibrium equations. The developed formulation is applicable for both compressible and incompressible solids behaviour. The method is general and can be extended for the simultaneous analysis of problems involving flow-thermal and stress effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this past decade finite volume (FV) methods have increasingly been used for the solution of solid mechanics problems. This contribution describes a cell vertex finite volume discretisation approach to the solution of geometrically nonlinear (GNL) problems. These problems, which may well have linear material properties, are subject to large deformation. This requires a distinct formulation, which is described in this paper together with the solution strategy for GNL problem. The competitive performance for this procedure against the conventional finite element (FE) formulation is illustrated for a three dimensional axially loaded column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational modelling of dynamic fluid-structure interaction (DFSI) is problematical since conventionally computational fluid dynamics (CFD) is solved using finite volume (FV) methods and computational structural mechanics (CSM) is based entirely on finite element (FE) methods. Hence, progress in modelling the emerging multi-physics problem of dynamic fluid-structure interaction in a consistent manner is frustrated and significant problems in computation convergence may be encountered in transferring and filtering data from one mesh and solution procedure to another, unless the fluid-structure coupling is either one way, very weak or both. This paper sets out the solution procedure for modelling the multi-physics dynamic fluid-structure interaction problem within a single software framework PHYSICA, using finite volume, unstructured mesh (FV-UM) procedures and will focus upon some of the problems and issues that have to be resolved for time accurate closely coupled dynamic fluid-structure flutter analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper demonstrates a modeling and design approach that couples computational mechanics techniques with numerical optimisation and statistical models for virtual prototyping and testing in different application areas concerning reliability of eletronic packages. The integrated software modules provide a design engineer in the electronic manufacturing sector with fast design and process solutions by optimizing key parameters and taking into account complexity of certain operational conditions. The integrated modeling framework is obtained by coupling the multi-phsyics finite element framework - PHYSICA - with the numerical optimisation tool - VisualDOC into a fully automated design tool for solutions of electronic packaging problems. Response Surface Modeling Methodolgy and Design of Experiments statistical tools plus numerical optimisaiton techniques are demonstrated as a part of the modeling framework. Two different problems are discussed and solved using the integrated numerical FEM-Optimisation tool. First, an example of thermal management of an electronic package on a board is illustrated. Location of the device is optimized to ensure reduced junction temperature and stress in the die subject to certain cooling air profile and other heat dissipating active components. In the second example thermo-mechanical simulations of solder creep deformations are presented to predict flip-chip reliability and subsequently used to optimise the life-time of solder interconnects under thermal cycling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments as well as computer modeling methods have been used to investigate the effect of the solder reflow process on the electrical characteristics and reliability of anisotropic conductive film (ACF) interconnections. In the experiments, the contact resistance of the ACF interconnections was found to increase after a subsequent reflow and the magnitude of this increase was strongly correlated to the peak temperature of the reflow profile. In fact, nearly 40 percent of the joints were opened (i.e. lifted away from the pad) after the reflow with a peak temperature of 260 OC while no openings was observed when the peak temperature was 210 "C. It is believed that the CTE mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. To understand this phenomenon better, a 3-D model of an ACF joint structure was built and Finite Element Analysis was used to predict the stress distrihution in the conductive particles, adhesive matrix and metal pads during the reflow process. The effects of the peak temperature, the CTE of the adhesive matrix and the bump height on the reliability of the ACF interconnections were discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The future success of many electronics companies will depend to a large extent on their ability to initiate techniques that bring schedules, performance, tests, support, production, life-cycle-costs, reliability prediction and quality control into the earliest stages of the product creation process. Earlier papers have discussed the benefits of an integrated analysis environment for system-level thermal, stress and EMC prediction. This paper focuses on developments made to the stress analysis module and presents results obtained for an SMT resistor. Lifetime predictions are made using the Coffin-Manson equation. Comparison with the creep strain energy based models of Darveaux (1997) shows the shear strain based method to underestimate the solder joint life. Conclusions are also made about the capabilities of both approaches to predict the qualitative and quantitative impact of design changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid OECB (Opto-Electrical Circuit Boards) are expected to make a significant impact in the telecomm switches arena within the next five years, creating optical backplanes with high speed point-to-point optical interconnects. OECB's incorporate short range optical interconnects, and are based on VCSEL (Vertical Cavity Surface Emitting Diode) and PD (Photo Diode) pairs, connected to each other via embedded waveguides in the OECB. The VCSEL device is flip-chip assembled onto an organic substrate with embedded optical waveguides. The performance of the VCSEL device is governed by the thermal, mechanical and optical characteristics of this assembly. During operation, the VCSEL device will heat up and the thermal change together with the CTE mismatch in the materials, will result in potential misalignment between the VCSEL apertures and the waveguide openings in the substrate. Any degree of misalignment will affect the optical performance of the package. This paper will present results from a highly coupled modelling analysis involving thermal, mechanical and optical models. The paper will also present results from an optimisation analysis based on Design of Experiments (DOE).