20 resultados para SPENCER
Resumo:
The Knoevenagel condensation of 1,3-dihydro-2H-indol-2-one with ferrocene carboxaldehyde afforded an approximate 2:1 mixture of the geometrical isomers (E)- and (Z)-3-ferrocenylmethylidene-1,3-dihydro-2H-indol-2-one respectively in an overall 67% yield; the air and solution-stable isomers were readily separated by preparative thin layer chromatography and their structures were unequivocally elucidated in solution, by (1)H NMR spectroscopy, and in the solid phase, by X-ray crystallography; both isomers of displayed in vitro toxicity against B16 melanoma and Vero cell lines in the micromolar range and inhibited the kinase VEGFR-2 with IC(50) values of ca. 200 nM.
Resumo:
The reaction of the five-membered C,N-palladacycle [(L)PdCl](2), where LH = 1-methyl-5-phenyl-1H-1,4-benzodiazepin-2(3H)-one, with 1,2-ethanebis(diphenylphosphine), dppe, leads to the formation of the bridged palladacycle. [Pd(2)L(2)(mu-dppe)Cl(2)] 3, which was characterised in solution by (1)H and (31)P NMR spectroscopy and in the solid state by X-ray crystallography. Complex 3 was tested in vitro against a number of cell lines. For example, it inhibited K562 leukaemia cells with an IC(50) value of 4.3 microM (1 h exposure) and displayed cathepsin B inhibitory action with an IC(50) value of 3 microM.
Resumo:
A modified experimental procedure for the synthesis of MESG (2-amino-6-mercapto-7-methylpurine ribonucleoside) 1 has been successfully performed and its full characterization is presented. High resolution ESI(+)-MSMS indicates both the nucleoside bond cleavage as the main fragmentation in the gas phase and a possible SN1 mechanism. Ab initio transition state calculations based on the blue print transition state support this mechanistic rationale and discard an alternative SN2 mechanism. Assays using purine nucleoside phosphorylase (PNP) enzyme (human and M. tuberculosis sources) indicate its efficiency in the phosphorolysis of MESG and allow the quantitative determination of inorganic phosphate in real time assay.
Resumo:
The reaction of the five- or six-membered C,N or C,S-palladacycles [(L)PdCl](2) with PTA (1,3,5-triaza-7-phosphaadamantane) led to the monomeric complexes [(L)Pd(PTA)Cl] 6a, 6b and 7 where LH= N,N-dimethyl-1-phenylmethanamine, benzyl(methyl)sulfane or 1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one respectively. Dimeric complexes have also been synthesised: [Pd(2)L(2)(mu-dppe)Cl(2)], where LH = 1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (1a), (R)- or (S)-3-isopropyl-1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (1b, 1c), [Pd(2)L(2)(mu-dppf)Cl(2)], where L= 1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (4a) or (R)-3-isopropyl-1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (4b), respectively, and dppe = 1,2-bis(diphenylphosphino)ethane, dppf = 1,1'-bis(diphenylphosphino)ferrocene. The complexes were characterised in solution, by (1)H and (31)P NMR spectroscopy, and single crystals of complexes 6b and 7 were studied in the solid state by X-ray crystallography. The palladacycles were evaluated for in vitro activity as cytotoxic agents on A2780/S cells and also as cathepsin B inhibitors, an enzyme implicated in a number of cancer related events.
Resumo:
The solid-state structures of a series of seven substituted 3-methylidene-1H-indol-2(3H)-one derivatives have been determined by single-crystal X-ray diffraction and are compared in detail. Six of the structures {(3Z)-3-(1H-pyrrol-2- ylmethylidene)-1H-indol-2(3H)-one, C13H10N2O, (2a); (3Z)-3-( 2-thienylmethylidene)-1H-indol-2(3H)-one, C13H9NOS, (2b); (3E)-3-(2-furylmethylidene)-1H-indol-2(3H)-one monohydrate, C13H9NO2 center dot H2O, (3a); 3-(1-methylethylidene)-1H-indol- 2(3H)-one, C11H11NO, (4a); 3-cyclohexylidene-1H-indol- 2(3H)-one, C14H15NO, (4c); and spiro[1,3-dioxane-2,3'-indolin]- 2'-one, C11H11NO3, (5)} display, as expected, intermolecular hydrogen bonding (N-H center dot center dot center dot O=C) between the 1H-indol-2(3H)-one units. However, methyl 3-(1-methylethylidene)- 2-oxo-2,3-dihydro-1H-indole-1-carboxylate, C13H13NO3, (4b), a carbamate analogue of (4a) lacking an N-H bond, displays no intermolecular hydrogen bonding. The structure of (4a) contains three molecules in the asymmetric unit, while (4b) and (4c) both contain two independent molecules.
Resumo:
Air stable benzodiazepine containing palladacycles were synthesized by a C-H activation reaction and studied by mass spectrometry and X-ray crystallography. Catalytic C-H functionalizations of 1-methyl-5-phenyl-1H-1,4-benzodiazepin-2(3H)-one with diphenyliodonium hexafluorophosphate led to a mixture, which included the starting material and the expected product 1-methyl-5-(2'-biphenyl)-1H-1,4-benzodiazepin-2(3H)-one. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Novel, achiral 1H-1,3,5-benzotriazepine-2,4(3H,5H)-diones have been prepared and structurally characterized. These compounds are potent CCK2 receptor antagonists that display a high degree of selectivity over CCK1 receptors.
Resumo:
Heterocycle containing nitroaromatics were reduced by Mo(CO)(6) and DBU in EtOH under microwave irradiation within 15 min. Under the same conditions, 4-fluoronitrobenzene was reduced to 4-fluoroaniline, whereas 2-chloro-1-fluoro-4-nitrobenzene afforded a mixture of 3-chloro-4-fluoroaniline and 3-chloro-4-ethoxyaniline. The extent of the competing SNAr/reduction process could be influenced by the nature of the solvent, with t-BuOH the inert solvent of choice. The latter was used as solvent for SNAr/reductions of 2-chloro-1-fluoro-4-nitrobenzene with S-nucleophiles to yield 3-chloro-4-mercaptoanilines. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
Summary: This chapter contains sections titled: * Introduction: CC Bond Formation via Cyclopalladation Reactions * Stoichiometric CH Activation Chemistry * Catalytic Chemistry * Arylations * Direct CH CH Coupling Reactions * Alkylations * Other Reactions * Conclusion * References
Resumo:
Summary: This chapter contains sections titled: * Introduction * Chiral Palladacycles in Aldol and Related Transformations * Catalytic Allylic Rearrangements * Catalytic C-C Bond-Forming Reactions * Oxidations Involving Palladacycles * Conclusion * References
Resumo:
Understanding the dynamics of fine sediment transport across the upper intertidal zone is critical in managing the erosion and accretion of intertidal areas, and in managed realignment/estuarine habitat recreation strategies. This paper examines the transfer of sediments between salt marsh and mudflat environments in two contrasting macrotidal estuaries: the Seine (France) and the Medway (UK), using data collected during two joint field seasons undertaken by the Anglo-French RIMEW project (Rives-Manche Estuary Watch). High-resolution ADCP, Altimeter, OBS and ASM measurements from mudflat and marsh surface environments have been combined with sediment trap data to examine short-term sediment transport processes under spring tide and storm flow conditions. In addition, the longer-term accumulation of sediment in each salt marsh system has been examined via radiometric dating of sediment cores. In the Seine, rapid sediment accumulation and expansion of salt marsh areas, and subsequent loss of open intertidal mudflats, is a major problem, and the data collected here indicate a distinct net landward flux of sediments into the marsh interior. Suspended sediment fluxes are much higher than in the Medway estuary (averaging 0.09 g/m(3)/s), and vertical accumulation rates at the salt marsh/mudflat boundary exceed 3 cm/y. Suspended sediment data collected during storm surge conditions indicate that significant in-wash of fine sediments into the marsh interior can occur during (and following) these high-magnitude events. In contrast to the Seine, the Medway is undergoing erosion and general loss of salt marsh areas. Suspended sediment fluxes are of the order of 0.03 g/m(3)/s, and the marsh system here has much lower rates of vertical accretion (sediment accumulation rates are ca. 4 mm/y). Current velocity data for the Medway site indicate higher velocities on the ebb tide than occur on the flood tide, which may be sufficient to remobilise sediments deposited on the previous tide and so force net removal of material from the marsh.
Resumo:
YCY pincer palladacycles, where YCY is typically an SCS, NCN, PCP, SeCSe anionic six-electron donor ligand (e.g. see 1-6, Scheme 1.1), are a well-established family of organometallic complexes with manifold applications in catalysis, synthesis and materials science [1-24]. Their synthesis can be achieved by many routes including C-H activation, oxidative addition, transmetalation and trans-cyclopalladation [25].