95 resultados para Packaging.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates a modeling and design approach that couples computational mechanics techniques with numerical optimisation and statistical models for virtual prototyping and testing in different application areas concerning reliability of eletronic packages. The integrated software modules provide a design engineer in the electronic manufacturing sector with fast design and process solutions by optimizing key parameters and taking into account complexity of certain operational conditions. The integrated modeling framework is obtained by coupling the multi-phsyics finite element framework - PHYSICA - with the numerical optimisation tool - VisualDOC into a fully automated design tool for solutions of electronic packaging problems. Response Surface Modeling Methodolgy and Design of Experiments statistical tools plus numerical optimisaiton techniques are demonstrated as a part of the modeling framework. Two different problems are discussed and solved using the integrated numerical FEM-Optimisation tool. First, an example of thermal management of an electronic package on a board is illustrated. Location of the device is optimized to ensure reduced junction temperature and stress in the die subject to certain cooling air profile and other heat dissipating active components. In the second example thermo-mechanical simulations of solder creep deformations are presented to predict flip-chip reliability and subsequently used to optimise the life-time of solder interconnects under thermal cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the model geometry creation to the model analysis, the stages in between such as mesh generation are the most manpower intensive phase in a mesh-based computational mechanics simulation process. On the other hand the model analysis is the most computing intensive phase. Advanced computational hardware and software have significantly reduced the computing time - and more importantly the trend is downward. With the kind of models envisaged coming, which are larger, more complex in geometry and modelling, and multiphysics, there is no clear trend that the manpower intensive phase is to decrease significantly in time - in the present way of operation it is more likely to increase with model complexity. In this paper we address this dilemma in collaborating components for models in electronic packaging application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predicting the reliability of newly designed products, before manufacture, is obviously highly desirable for many organisations. Understanding the impact of various design variables on reliability allows companies to optimise expenditure and release a package in minimum time. Reliability predictions originated in the early years of the electronics industry. These predictions were based on historical field data which has evolved into industrial databases and specifications such as the famous MIL-HDBK-217 standard, plus numerous others. Unfortunately the accuracy of such techniques is highly questionable especially for newly designed packages. This paper discusses the use of modelling to predict the reliability of high density flip-chip and BGA components. A number of design parameters are investigated at the assembly stage, during testing, and in-service.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid OECB (Opto-Electrical Circuit Boards) are expected to make a significant impact in the telecomm switches arena within the next five years, creating optical backplanes with high speed point-to-point optical interconnects. OECB's incorporate short range optical interconnects, and are based on VCSEL (Vertical Cavity Surface Emitting Diode) and PD (Photo Diode) pairs, connected to each other via embedded waveguides in the OECB. The VCSEL device is flip-chip assembled onto an organic substrate with embedded optical waveguides. The performance of the VCSEL device is governed by the thermal, mechanical and optical characteristics of this assembly. During operation, the VCSEL device will heat up and the thermal change together with the CTE mismatch in the materials, will result in potential misalignment between the VCSEL apertures and the waveguide openings in the substrate. Any degree of misalignment will affect the optical performance of the package. This paper will present results from a highly coupled modelling analysis involving thermal, mechanical and optical models. The paper will also present results from an optimisation analysis based on Design of Experiments (DOE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The domain decomposition method is directed to electronic packaging simulation in this article. The objective is to address the entire simulation process chain, to alleviate user interactions where they are heavy to mechanization by component approach to streamline the model simulation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication, assembly and testing of electronic packaging can involve complex interactions between physical phenomena such as temperature, fluid flow, electromagnetics, and stress. Numerical modelling and optimisation tools are key computer-aided-engineering technologies that aid design engineers. This paper discusses these technologies and there future developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the assembly process using next generation electroformed stencils and Isotropic Conductive Adhesives (ICAs) as interconnection material. The utilisation of ICAs in flip-chip assembly process is investigated as an alternative to the lead and lead-free solder alloys and aims to ensure a low temperature (T < 100 °C) assembly process. The paper emphasizes and discusses in details the assembly of a flip-chip package based on copper columns bumped die and substrate with stencil printed ICA deposits at sub-100 μm pitch. A computational modelling approach is undertaken to provide comprehensive results on reliability trends of ICA joints subject to thermal cycling of the flip-chip assembly based on easy to use damage criteria and damage evaluation. Important design parameters in the package are selected and investigated using numerical modelling techniques to provide knowledge and understanding of their impact on the thermo-mechanical behaviour of the flip-chip ICA joints. Sensitivity analysis of the damage in the adhesive material is also carried out. Optimal design rules for enhanced performance and improved thermo-mechanical reliability of ICA assembled flip-chip packages are finally formulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-electronic displays are sensitive devices and its performance is easily affected by external environmental factors. To enable the display to perform in extreme conditions, the device must be structurally strengthened, the effects of this packaging process was investigated. A thermo-mechanical finite element analysis was used to discover potential problems in the packaging process and to improve the overall design of the device. The main concern from the analysis predicted that displacement of the borosilicate glass and the Y stress of the adhesive are important. Using this information a design which reduced the variation of displacement and kept the stress to a minimum was suggested

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance enhancement of AMLCD's has been hindered with problems encountered during the curing process, such as window framing and de-lamination of the glass and adhesive. A thermo-mechanical analysis using FEA was conducted to help optimise the design of the rugged display and enhance the optical performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this paper is part of the OPISA project. This is a collaborative research project between the University of Greenwich and Bookham Technology. This report describes some of the initial work undertaken towards the goal of investigating optoelectronic packaging where alignment issues between optical sources and fibers can arise as part of the fabrication process. The focus of this study is on charting the dynamics of laser spot weld formation. This paper introduces some of the initial simulation work that has been undertaken and presents a model describing a transient heat source applied from a laser pulse to weld a stainless steel sleeve and ferrule and the resulting weld formation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today most of the IC and board designs are undertaken using two-dimensional graphics tools and rule checks. System-in-package is driving three-dimensional design concepts and this is posing a number of challenges for electronic design automation (EDA) software vendors. System-in-package requires three-dimensional EDA tools and design collaboration systems with appropriate manufacturing and assembly rules for these expanding technologies. Simulation and Analysis tools today focus on one aspect of the design requirement, for example, thermal, electrical or mechanical. System-in-Package requires analysis and simulation tools that can easily capture the complex three dimensional structures and provided integrated fast solutions to issues such as thermal management, reliability, electromagnetic interference, etc. This paper discusses some of the challenges faced by the design and analysis community in providing appropriate tools to engineers for System-in-Package design

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of variable frequency microwave technology in curing of polymer materials used in microelectronics applications is discussed. A revolutionary open-ended microwave curing system is outlined and assessed using experimental and numerical approaches. Experimental and numerical results are presented, demonstrating the feasibility of the system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the reliability of the isolation substrate and chip mountdown solder interconnect of power modules under thermal-mechanical loading has been analysed using a numerical modelling approach. The damage indicators such as the peel stress and the accumulated plastic work density in solder interconnect are calculated for a range of geometrical design parameters, and the effects of these parameters on the reliability are studied by using a combination of the finite element analysis (FEA) method and optimisation techniques. The sensitivities of the reliability of the isolation substrate and solder interconnect to the changes of the design parameters are obtained and optimal designs are studied using response surface approximation and gradient optimization method

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – This paper aims to present an open-ended microwave curing system for microelectronics components and a numerical analysis framework for virtual testing and prototyping of the system, enabling design of physical prototypes to be optimized, expediting the development process. Design/methodology/approach – An open-ended microwave oven system able to enhance the cure process for thermosetting polymer materials utilised in microelectronics applications is presented. The system is designed to be mounted on a precision placement machine enabling curing of individual components on a circuit board. The design of the system allows the heating pattern and heating rate to be carefully controlled optimising cure rate and cure quality. A multi-physics analysis approach has been adopted to form a numerical model capable of capturing the complex coupling that exists between physical processes. Electromagnetic analysis has been performed using a Yee finite-difference time-domain scheme, while an unstructured finite volume method has been utilized to perform thermophysical analysis. The two solvers are coupled using a sampling-based cross-mapping algorithm. Findings – The numerical results obtained demonstrate that the numerical model is able to obtain solutions for distribution of temperature, rate of cure, degree of cure and thermally induced stresses within an idealised polymer load heated by the proposed microwave system. Research limitations/implications – The work is limited by the absence of experimentally derived material property data and comparative experimental results. However, the model demonstrates that the proposed microwave system would seem to be a feasible method of expediting the cure rate of polymer materials. Originality/value – The findings of this paper will help to provide an understanding of the behaviour of thermosetting polymer materials during microwave cure processing.