28 resultados para Nonnegative sine polynomial


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper considers the three‐machine open shop scheduling problem to minimize themakespan. It is assumed that each job consists of at most two operations, one of which is tobe processed on the bottleneck machine, the same for all jobs. A new lower bound on theoptimal makespan is derived, and a linear‐time algorithm for finding an optimalnon‐preemptive schedule is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a fully polynomial-time approximation scheme (FPTAS) for minimizing the weighted total tardiness on a single machine, provided that all due dates are equal. The FPTAS is obtained by converting an especially designed pseudopolynomial dynamic programming algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract not available

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper considers a scheduling model that generalizes the well-known open shop, flow shop, and job shop models. For that model, called the super shop, we study the complexity of finding a time-optimal schedule in both preemptive and non-preemptive cases assuming that precedence constraints are imposed over the set of jobs. Two types of precedence rela-tions are considered. Most of the arising problems are proved to be NP-hard, while for some of them polynomial-time algorithms are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies two models of two-stage processing with no-wait in process. The first model is the two-machine flow shop, and the other is the assembly model. For both models we consider the problem of minimizing the makespan, provided that the setup and removal times are separated from the processing times. Each of these scheduling problems is reduced to the Traveling Salesman Problem (TSP). We show that, in general, the assembly problem is NP-hard in the strong sense. On the other hand, the two-machine flow shop problem reduces to the Gilmore-Gomory TSP, and is solvable in polynomial time. The same holds for the assembly problem under some reasonable assumptions. Using these and existing results, we provide a complete complexity classification of the relevant two-stage no-wait scheduling models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper considers the open shop scheduling problem to minimize the make-span, provided that one of the machines has to process the jobs according to a given sequence. We show that in the preemptive case the problem is polynomially solvable for an arbitrary number of machines. If preemption is not allowed, the problem is NP-hard in the strong sense if the number of machines is variable, and is NP-hard in the ordinary sense in the case of two machines. For the latter case we give a heuristic algorithm that runs in linear time and produces a schedule with the makespan that is at most 5/4 times the optimal value. We also show that the two-machine problem in the nonpreemptive case is solvable in pseudopolynomial time by a dynamic programming algorithm, and that the algorithm can be converted into a fully polynomial approximation scheme. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 705–731, 1998

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trends in sample extremes are of interest in many contexts, an example being environmental statistics. Parametric models are often used to model trends in such data, but they may not be suitable for exploratory data analysis. This paper outlines a semiparametric approach to smoothing example extremes, based on local polynomial fitting of the generalized extreme value distribution and related models. The uncertainty of fits is assessed by using resampling methods. The methods are applied to data on extreme temperatures and on record times for the womens 3000m race.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given a relation α (a binary sociogram) and an a priori equivalence relation π, both on the same set of individuals, it is interesting to look for the largest equivalence πo that is contained in and is regular with respect to α. The equivalence relation πo is called the regular interior of π with respect to α. The computation of πo involves the left and right residuals, a concept that generalized group inverses to the algebra of relations. A polynomial-time procedure is presented (Theorem 11) and illustrated with examples. In particular, the regular interior gives meet in the lattice of regular equivalences: the regular meet of regular equivalences is the regular interior of their intersection. Finally, the concept of relative regular equivalence is defined and compared with regular equivalence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines scheduling problems in which the setup phase of each operation needs to be attended by a single server, common for all jobs and different from the processing machines. The objective in each situation is to minimize the makespan. For the processing system consisting of two parallel dedicated machines we prove that the problem of finding an optimal schedule is NP-hard in the strong sense even if all setup times are equal or if all processing times are equal. For the case of m parallel dedicated machines, a simple greedy algorithm is shown to create a schedule with the makespan that is at most twice the optimum value. For the two machine case, an improved heuristic guarantees a tight worst-case ratio of 3/2. We also describe several polynomially solvable cases of the later problem. The two-machine flow shop and the open shop problems with a single server are also shown to be NP-hard in the strong sense. However, we reduce the two-machine flow shop no-wait problem with a single server to the Gilmore-Gomory traveling salesman problem and solve it in polynomial time. (c) 2000 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers the problem of processing n jobs in a two-machine non-preemptive open shop to minimize the makespan, i.e., the maximum completion time. One of the machines is assumed to be non-bottleneck. It is shown that, unlike its flow shop counterpart, the problem is NP-hard in the ordinary sense. On the other hand, the problem is shown to be solvable by a dynamic programming algorithm that requires pseudopolynomial time. The latter algorithm can be converted into a fully polynomial approximation scheme that runs in time. An O(n log n) approximation algorithm is also designed whi finds a schedule with makespan at most 5/4 times the optimal value, and this bound is tight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given M(r; f) =maxjzj=r (jf(z)j) , curves belonging to the set of points M = fz : jf(z)j = M(jzj; f)g were de�ned by Hardy to be maximum curves. Clunie asked the question as to whether the set M could also contain isolated points. This paper shows that maximum curves consist of analytic arcs and determines a necessary condition for such curves to intersect. Given two entire functions f1(z) and f2(z), if the maximum curve of f1(z) is the real axis, conditions are found so that the real axis is also a maximum curve for the product function f1(z)f2(z). By means of these results an entire function of in�nite order is constructed for which the set M has an in�nite number of isolated points. A polynomial is also constructed with an isolated point.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper deals with the determination of an optimal schedule for the so-called mixed shop problem when the makespan has to be minimized. In such a problem, some jobs have fixed machine orders (as in the job-shop), while the operations of the other jobs may be processed in arbitrary order (as in the open-shop). We prove binary NP-hardness of the preemptive problem with three machines and three jobs (two jobs have fixed machine orders and one may have an arbitrary machine order). We answer all other remaining open questions on the complexity status of mixed-shop problems with the makespan criterion by presenting different polynomial and pseudopolynomial algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this paper is to investigate the p-ίh moment asymptotic stability decay rates for certain finite-dimensional Itό stochastic differential equations. Motivated by some practical examples, the point of our analysis is a special consideration of general decay speeds, which contain as a special case the usual exponential or polynomial type one, to meet various situations. Sufficient conditions for stochastic differential equations (with variable delays or not) are obtained to ensure their asymptotic properties. Several examples are studied to illustrate our theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we study a problem of scheduling and batching on two machines in a flow-shop and open-shop environment. Each machine processes operations in batches, and the processing time of a batch is the sum of the processing times of the operations in that batch. A setup time, which depends only on the machine, is required before a batch is processed on a machine, and all jobs in a batch remain at the machine until the entire batch is processed. The aim is to make batching and sequencing decisions, which specify a partition of the jobs into batches on each machine, and a processing order of the batches on each machine, respectively, so that the makespan is minimized. The flow-shop problem is shown to be strongly NP-hard. We demonstrate that there is an optimal solution with the same batches on the two machines; we refer to these as consistent batches. A heuristic is developed that selects the best schedule among several with one, two, or three consistent batches, and is shown to have a worst-case performance ratio of 4/3. For the open-shop, we show that the problem is NP-hard in the ordinary sense. By proving the existence of an optimal solution with one, two or three consistent batches, a close relationship is established with the problem of scheduling two or three identical parallel machines to minimize the makespan. This allows a pseudo-polynomial algorithm to be derived, and various heuristic methods to be suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that for the open shop scheduling problem to minimize the makespan there exists no polynomial-time heuristic algorithm that guarantees a worst-case performance ratio better than 5/4, unless P6≠NP. However, this result holds only if the instance of the problem contains jobs consisting of at least three operations. This paper considers the open shop scheduling problem, provided that each job consists of at most two operations, one of which is to be processed on one of the m⩾2 machines, while the other operation must be performed on the bottleneck machine, the same for all jobs. For this NP-hard problem we present a heuristic algorithm and show that its worst-case performance ratio is 5/4.