70 resultados para Fire protection districts


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we present some early work concerned with the development of a simple solid fuel combustion model incorporated within a Computational Fluid Dynamics (CFD) framework. The model is intended for use in engineering applications of fire field modeling and represents an extension of this technique to situations involving the combustion of solid cellulosic fuels. A simple solid fuel combustion model consisting of a thermal pyrolysis model, a six flux radiation model and an eddy-dissipation model for gaseous combustion have been developed and implemented within the CFD code CFDS-FLOW3D. The model is briefly described and demonstrated through two applications involving fire spread in a compartment with a plywood lined ceiling. The two scenarios considered involve a fire in an open and closed compartment. The model is shown to be able to qualitatively predict behaviors similar to "flashover"—in the case of the open room—and "backdraft"— in the case of the initially closed room.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a project aimed at making Computational Fluid Dynamics (CFD)- based fire simulation accessible to members of the fire safety engineering community. Over the past few years, the practice of CFD-based fire simulation has begun the transition from the confines of the research laboratory to the desk of the fire safety engineer. To a certain extent, this move has been driven by the demands of performance based building codes. However, while CFD modeling has many benefits over other forms of fire simulation, it requires a great deal of expertise on the user’s part to obtain reasonable simulation results. The project described in this paper, SMARTFIRE, aims to relieve some of this dependence on expertise so that users are less concerned with the details of CFD analysis and can concentrate on results. This aim is achieved by the use of an expert system component as part of the software suite which takes some of the expertise burden away from the user. SMARTFIRE also makes use of the latest developments in CFD technology in order to make the CFD analysis more efficient. This paper describes design considerations of the SMARTFIRE software, emphasizing its open architecture, CFD engine and knowledge-based systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract not available

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this paper is to demonstrate the potential of the EXODUS evacuation model in building environments. The latest PC/workstation version of EXODUS is described and is also applied to a large hypothetical supermarket/restaurant complex measuring 50 m x 40 m. A range of scenarios is presented where population characteristics (such as size, individual travel speeds, and individual response times), and enclosure configuration characteristics (such as number of exits, size of exits, and opening times of exits) are varied. The results demonstrate a wide range of occupant behavior including overtaking, queuing, redirection, and conflict avoidance. Evacuation performance is measured by a number of model predicted parameters including individual exit flow rates, overall evacuation flow rates, total evacuation time, average evacuation time per occupant, average travel distance, and average wait time. The simulations highlight the profound impact that variations in individual travel speeds and occupant response times have in determining the overall evacuation performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this paper is to demonstrate the potential of the EXODUS evacuation model in building environments. The latest PC/workstation version of EXODUS is described and is also applied to a large hypothetical supermarket/restaurant complex measuring 50 m x 40 m. A range of scenarios is presented where population characteristics (such as size, individual travel speeds, and individual response times), and enclosure configuration characteristics (such as number of exits, size of exits, and opening times of exits) are varied. The results demonstrate a wide range of occupant behavior including overtaking, queuing, redirection, and conflict avoidance. Evacuation performance is measured by a number of model predicted parameters including individual exit flow rates, overall evacuation flow rates, total evacuation time, average evacuation time per occupant, average travel distance, and average wait time. The simulations highlight the profound impact that variations in individual travel speeds and occupant response times have in determining the overall evacuation performance. 1. Jin, T., and Yamada T., "Experimental Study of Human Behavior in Smoke Filled Corridors," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 511-519. 2. Galea, E.R., and Galparsoro, J.M.P., "EXODUS: An Evacuation Model for Mass Transport Vehicles," UK CAA Paper 93006 ISBN 086039 543X, CAA London, 1993. 3. Galea, E.R., and Galparsoro, J.M.P., "A Computer Based Simulation Model for the Prediction of Evacuation from Mass Transport Vehicles," Fire Safety Journal, Vol. 22, 1994, pp. 341-366. 4. Galea, E.R., Owen, M., and Lawrence, P., "Computer Modeling of Human Be havior in Aircraft Fire Accidents," to appear in the Proceedings of Combus tion Toxicology Symposium, CAMI, Oklahoma City, OK, 1995. 5. Kisko, T.M. and Francis, R.L., "EVACNET+: A Computer Program to Determine Optimal Building Evacuation Plans," Fire Safety Journal, Vol. 9, 1985, pp. 211-220. 6. Levin, B., "EXITT, A Simulation Model of Occupant Decisions and Actions in Residential Fires," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 561-570. 7. Fahy, R.F., "EXIT89: An Evacuation Model for High-Rise Buildings," Pro ceedings of The Third International Sym posium on Fire Safety Science, 1991, pp. 815-823. 8. Thompson, P.A., and Marchant, E.W., "A Computer Model for the Evacuation of Large Building Populations," Fire Safety Journal, Vol. 24, 1995, pp. 131-148. 9. Still, K., "New Computer System Can Predict Human Behavior Response to Building Fires," FIRE 84, 1993, pp. 40-41. 10. Ketchell, N., Cole, S.S., Webber, D.M., et.al., "The Egress Code for Human Move ment and Behavior in Emergency Evacu ations," Engineering for Crowd Safety (Smith, R.A., and Dickie, J.F., Eds.), Elsevier, 1993, pp. 361-370. 11. Takahashi, K., Tanaka, T. and Kose, S., "An Evacuation Model for Use in Fire Safety Design of Buildings," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 551- 560. 12. G2 Reference Manual, Version 3.0, Gensym Corporation, Cambridge, MA. 13. XVT Reference Manual, Version 3.0 XVT Software Inc., Boulder, CO. 14. Galea, E.R., "On the Field Modeling Approach to the Simulation of Enclosure Fires, Journal of Fire Protection Engineering, Vol. 1, No. 1, 1989, pp. 11-22. 15. Purser, D.A., "Toxicity Assessment of Combustion Products," SFPE Handbook of Fire Protection Engineering, National Fire Protection Association, Quincy, MA, pp. 1-200 - 1-245, 1988. 16. Hankin, B.D., and Wright, R.A., "Pas senger Flows in Subways," Operational Research Quarterly, Vol. 9, 1958, pp. 81-88. 17. HMSO, The Building Regulations 1991 - Approved Document B, section B 1 (1992 edition), HMSO publications, London, pp. 9-40. 18. Polus A., Schofer, J.L., and Ushpiz, A., "Pedestrian Flow and Level of Service," Journal of Transportation Engineering, Vol. 109, 1983, pp. 46-47. 19. Muir, H., Marrison, C., and Evans, A., "Aircraft Evacuations: the Effect of Passenger Motivation and Cabin Con figuration Adjacent to the Exit," CAA Paper 89019, ISBN 0 86039 406 9, 1989. 20. Muir, H., Private communication to appear as a CAA report, 1996.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dr Fuchen Jia, Dr Mayer Patel and Professor Edwin Galea explain how advanced fire models were used to unravel the secrets of Swissair Flight 111, which crashed off the coast of Canada in 1998.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Professor Ed Galea CEng, MIFireE provides a welcome to Pedestrian and Evacuation Dynamics 2003, (PED 2003) to be held in London on 20-22 August 2003.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

H. Jiang, S. Gwynne, E.R. Galea, P. Lawrence, F. Jia and H. Ingason model a disco fire in Gothenburg, Sweden to compare the simulation’s predictions with actual events

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The World Trade Center Evacuation: The evacuation of the WTC complex represents one of the largest full-scale evacuations of people in modern times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, evacuation models have been increasingly applied in an attempt to understand the outcome of emergency egress scenarios.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Occupant interaction with signage systems is being introduced into evacuation simulations through the newly developed concept of the Visibility Catchment Area or VCA. In this article, we describe the concept of VCA and how it has been extended to incorporate the presence of physical obstructions and termination distance. The VCA concept is then linked to a prototype behavior model intended to represent the occupant's interaction with the signage system. The functionality and performance of the newly developed model is then demonstrated through the simulation of various evacuation scenarios within a hypothetical supermarket layout

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Signage systems are widely used in buildings to provide information for wayfinding, thereby assisting in navigation during normal circulation of pedestrians and, more importantly, exiting information during emergencies. An important consideration in determining the effectiveness of signs is establishing the region from which the sign is visible to occupants, the so-called visibility catchment area (VCA). This study attempts to factor into the determination of the VCA of signs, the observation angle of the observer. In building regulations, it is implicitly assumed that the VCA is independent of the observation angle. A theoretical model is developed to explain the relationship between the VCA and observation angle and experimental trials are performed in order to assess the validity of this model. The experimental findings demonstrate a consistency with the theoretical model. Given this result, the functionality of a comprehensive evacuation model is extended in accordance with the assumptions on which the theoretical model is based and is then demonstrated using several examples

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, the representation of the merging process at the floor— stair interface is examined within a comprehensive evacuation model and trends found in experimental data are compared with model predictions. The analysis suggests that the representation of floor—stair merging within the comprehensive model appears to be consistent with trends observed within several published experiments of the merging process. In particular: (a) The floor flow rate onto the stairs decreases as the stair population density increases. (b) For a given stair population density, the floor population's flow rate onto the stairs can be maximized by connecting the floor to the landing adjacent to the incoming stair. (c) In situations where the floor is connected adjacent to the incoming stair, the merging process appears to be biased in favor of the floor population. It is further conjectured that when the floor is connected opposite the incoming stair, the merging process between the stair and floor streams is almost in balance for high stair population densities, with a slight bias in favor of the floor stream at low population densities. A key practical finding of this analysis is that the speed at which a floor can be emptied onto a stair can be enhanced simply by connecting the floor to the landing at a location adjacent to the incoming stair rather than opposite the stair. Configuring the stair in this way, while reducing the floor emptying time, results in a corresponding decrease in the descent flow rate of those already on the stairs. While this is expected to have a negligible impact on the overall time to evacuate the building, the evacuation time for those higher up in the building is extended while those on the lower flows is reduced. It is thus suggested that in high-rise buildings, floors should be connected to the landing on the opposite side to the incoming stair. Information of this type will allow engineers to better design stair—floor interfaces to meet specific design objectives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article concerns an investigation of the full scale evacuation of a building with a configuration similar to that of the World Trade Center (WTC) North Tower using computer simulation. A range of evacuation scenarios is explored in order to better understand the evacuation of the WTC on 11 September 2001. The analysis makes use of response time data derived from a study of published WTC survivor accounts. Geometric details of the building are obtained from architects' plans while the total building population used in the scenarios is based on estimates produced by the National Institute of Standards and Technology formal investigation into the evacuation. This paper attempts to approximate the events of 11 September 2001 and pursue several `what if' questions concerning the evacuation. In particular, the study explores the likely outcome had a single staircase survived intact from top to bottom. More generally, this paper explores issues associated with the practical limits of building size that can be expected to be efficiently evacuated using stairs alone.

Relevância:

20.00% 20.00%

Publicador: