5 resultados para Cinetica chimica, modelli cinetici, detonazione, evoluzione, CFD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract not available

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the casting of reactive metals, such as titanium alloys, contamination can be prevented if there is no contact between the hot liquid metal and solid crucible. This can be achieved by containing the liquid metal by means of high frequency AC magnetic field. A water cooled current-carrying coil, surrounding the metal can then provide the required Lorentz forces, and at the same time the current induced in the metal can provide the heating required to melt it. This ‘attractive’ processing solution has however many problems, the most serious being that of the control and containment of the liquid metal envelope, which requires a balance of the gravity and induced inertia forces on the one side, and the containing Lorentz and surface tension forces on the other. To model this process requires a fully coupled dyna ic solution of the flow fields, magnetic field and heat transfer/melding process to account for. A simplified solution has been published previously providing quasi-static solutions only, by taking the irrotational ‘magnetic pressure’ term of the Lorentz force into account. The authors remedy this deficiency by modelling the full problem using CFD techniques. The salient features of these techniques are included in this paper, as space allows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General-purpose parallel processing for solving day-to-day industrial problems has been slow to develop, partly because of the lack of suitable hardware from well-established, mainstream computer manufacturers and suitably parallelized application software. The parallelization of a CFD-(computational fluid dynamics) flow solution code is known as ESAUNA. This code is part of SAUNA, a large CFD suite aimed at computing the flow around very complex aircraft configurations including complete aircraft. A novel feature of the SAUNA suite is that it is designed to use either block-structured hexahedral grids, unstructured tetrahedral grids, or a hybrid combination of both grid types. ESAUNA is designed to solve the Euler equations or the Navier-Stokes equations, the latter in conjunction with various turbulence models. Two fundamental parallelization concepts are used—namely, grid partitioning and encapsulation of communications. Grid partitioning is applied to both block-structured grid modules and unstructured grid modules. ESAUNA can also be coupled with other simulation codes for multidisciplinary computations such as flow simulations around an aircraft coupled with flutter prediction for transient flight simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract not available