35 resultados para Chip Stewart


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes how modeling technology has been used in providing fatigue life time data of two flip-chip models. Full-scale three-dimensional modeling of flip-chips under cyclic thermal loading has been combined with solder joint stand-off height prediction to analyze the stress and strain conditions in the two models. The Coffin-Manson empirical relationship is employed to predict the fatigue life times of the solder interconnects. In order to help designers in selecting the underfill material and the printed circuit board, the Young's modulus and the coefficient of thermal expansion of the underfill, as well as the thickness of the printed circuit boards are treated as variable parameters. Fatigue life times are therefore calculated over a range of these material and geometry parameters. In this paper we will also describe how the use of micro-via technology may affect fatigue life

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flip chip component is a silicon chip mounted to a substrate with the active area facing the substrate. This paper presents the results of an investigation into the relationship between a number of important material properties and geometric parameters on the thermal-mechanical fatigue reliability of a standard flip chip design and a flip chip design with the use of microvias. Computer modeling has been used to analyze the mechanical conditions of flip chips under cyclic thermal loading where the Coffin-Manson empirical relationship has been used to predict the life time of the solder interconnects. The material properties and geometry parameters that have been investigated are the Young's modulus, the coefficient of thermal expansion (CTE) of the underfill, the out-of-plane CTE (CTEz) of the substrate, the thickness of the substrate, and the standoff height. When these parameters vary, the predicted life-times are calculated and some of the features of the results are explained. By comparing the predicted lifetimes of the two designs and the strain conditions under thermal loading, the local CTE mismatch has been found to be one of most important factors in defining the reliability of flip chips with microvias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes modelling technology and its use in providing data governing the assembly of flip-chip components. Details are given on the reflow and curing stages as well as the prediction of solder joint shapes. The reflow process involves the attachment of a die to a board via solder joints. After a reflow process, underfill material is placed between the die and the substrate where it is heated and cured. Upon cooling the thermal mismatch between the die, underfill, solder bumps, and substrate will result in a nonuniform deformation profile across the assembly and hence stress. Shape predictions then thermal solidification and stress prediction are undertaken on solder joints during the reflow process. Both thermal and stress calculations are undertaken to predict phenomena occurring during the curing of the underfill material. These stresses may result in delamination between the underfill and its surrounding materials leading to a subsequent reduction in component performance and lifetime. Comparisons between simulations and experiments for die curvature will be given for the reflow and curing process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this paper focuses on the effect of reflow process on the contact resistance and reliability of anisotropic conductive film (ACF) interconnection. The contact resistance of ACF interconnection increases after reflow process due to the decrease in contact area of the conducting particles between the mating I/O pads. However, the relationship between the contact resistance and bonding parameters of the ACF interconnection with reflow treatment follows the similar trend to that of the as-bonded (i.e. without reflow) ACF interconnection. The contact resistance increases as the peak temperature of reflow profile increases. Nearly 40% of the joints were found to be open after reflow with 260 °C peak temperature. During the reflow process, the entrapped (between the chip and substrate) adhesive matrix tries to expand much more than the tiny conductive particles because of the higher coefficient of thermal expansion, the induced thermal stress will try to lift the bump from the pad and decrease the contact area of the conductive path and eventually, leading to a complete loss of electrical contact. In addition, the environmental effect on contact resistance such as high temperature/humidity aging test was also investigated. Compared with the ACF interconnections with Ni/Au bump, higher thermal stress in the Z-direction is accumulated in the ACF interconnections with Au bump during the reflow process owing to the higher bump height, thus greater loss of contact area between the particles and I/O pads leads to an increase of contact resistance and poorer reliability after reflow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, before flip chips can be assembled the dies have to be attached with solder bumps. This process involves the deposition of metal layers on the Al pads on the dies and this is called the under bump metallurgy (UBM). In an alternative process, however, Copper (Cu) columns can be used to replace solder bumps and the UBM process may be omitted altogether. After the bumping process, the bumped dies can be assembled on to the printed circuit board (PCB) by using either solder or conductive adhesives. In this work, the reliability issues of flip chips with Cu column bumped dies have been studied. The flip chip lifetime associated with the solder fatigue failure has been modeled for a range of geometric parameters. The relative importance of these parameters is given and solder volume has been identified as the most important design parameter for long-term reliability. Another important problem that has been studied in this work is the dissolution of protection metals on the pad and Cu column in the reflow process. For small solder joints the amount of Cu which dissolves into the molten solder after the protection layers have worn out may significantly affect solder joint properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flip-chip assembly, developed in the early 1960s, is now being positioned as a key joining technology to achieve high-density mounting of electronic components on to printed circuit boards for high-volume, low-cost products. Computer models are now being used early within the product design stage to ensure that optimal process conditions are used. These models capture the governing physics taking place during the assembly process and they can also predict relevant defects that may occur. Describes the application of computational modelling techniques that have the ability to predict a range of interacting physical phenomena associated with the manufacturing process. For example, in the flip-chip assembly process we have solder paste deposition, solder joint shape formation, heat transfer, solidification and thermal stress. Illustrates the application of modelling technology being used as part of a larger UK study aiming to establish a process route for high-volume, low-cost, sub-100-micron pitch flip-chip assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper details and demonstrates integrated optimisation-reliability modelling for predicting the performance of solder joints in electronic packaging. This integrated modelling approach is used to identify efficiently and quickly the most suitable design parameters for solder joint performance during thermal cycling and is demonstrated on flip-chip components using “no-flow” underfills. To implement “optimisation in reliability” approach, the finite element simulation tool – PHYSICA, is coupled with optimisation and statistical tools. This resulting framework is capable of performing design optimisation procedures in an entirely automated and systematic manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the flip-chip assembly process, no-flow underfill materials have a particular advantage over traditional underfill: the application and curing of the former can be undertaken before and during the reflow process. This advantage can be exploited to increase the flip-chip manufacturing throughput. However, adopting a no-flow underfill process may introduce reliability issues such as underfill entrapment, delamination at interfaces between underfill and other materials, and lower solder joint fatigue life. This paper presents an analysis on the assembly and the reliability of flip-chips with no-flow underfill. The methodology adopted in the work is a combination of experimental and computer-modeling methods. Two types of no-flow underfill materials have been used for the flip chips. The samples have been inspected with X-ray and scanning acoustic microscope inspection systems to find voids and other defects. Eleven samples for each type of underfill material have been subjected to thermal shock test and the number of cycles to failure for these flip chips have been found. In the computer modeling part of the work, a comprehensive parametric study has provided details on the relationship between the material properties and reliability, and on how underfill entrapment may affect the thermal–mechanical fatigue life of flip chips with no-flow underfill.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the effects of the solder reflow process on the reliability of anisotropic conductive film (ACF) interconnections for flip chip on flex (FCOF) applications are investigated. Experiments as well as computer modeling methods have been used. In the experiments, it was found that the contact resistance of ACF joints increased after the subsequent reflow process, and the magnitude of this increase was strongly correlated to the peak temperature of the reflow profile. Nearly 40% of the joints were opened (i.e. lifted away from the pad) after the reflow process with 260 °C peak temperature while no opening was observed when the peak temperature was 210 °C. It is believed that the CTE mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. It was also found that the ACF joints after the reflow process with 210 °C peak temperature showed a high ability to resist water absorption under steady state 85 °C/85%RH conditions, probably because the curing degree of the ACF was improved during the reflow process. To give a good understanding, a 3D model of an ACF joint structure was built and finite element analysis was used to predict the stress distribution in the conductive particles, adhesive matrix and metal pads during the reflow process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses results from a highly interdisciplinary research project which investigated different packaging options for ultra-fine pitch, low temperature and low cost flip-chip assembly. Isotropic Conductive Adhesives (ICAs) are stencil printed to form the interconnects for the package. ICAs are utilized to ensure a low temperature assembly process of flip-chip copper column bumped packages. Results are presented on the structural integrity of novel electroformed stencils. ICA deposits at sub-100 micron pitch and the subsequent thermo-mechanical behaviour of the flip-chip ICA joints are analysed using numerical modelling techniques. Optimal design rules for enhanced performance and thermomechanical reliability of ICA assembled flip-chip packages are formulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, research has been carried out to test a novel bumping method which omits the under bump metallurgy (UBM) forming process by bonding copper columns directly onto the Al pads of the silicon dies. This bumping method could be adopted to simplify the flip chip assembly process, increase the productivity and achieve a higher I/O count. Computer modelling methods are used to predict the shape of solder joints and response of the flip chip to thermal cyclic loading. The accumulated plastic strain energy at the comer solder joints is used as the damage indicator. Models with a range of design parameters have been compared for their reliability. The ranking of the relative importance of these parameters is given. Results from these analyses are being used by our industrial and academic partners to identify optimal design conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The curing of conductive adhesives and underfills can save considerable time and offer cost benefits for the microsystems and electronics packaging industry. In contrast to conventional ovens, curing by microwave energy generates heat internally within each individual component of an assembly. The rate at which heat is generated is different for each of the components and depends on the material properties as well as the oven power and frequency. This leads to a very complex and transient thermal state, which is extremely difficult to measure experimentally. Conductive adhesives need to be raised to a minimum temperature to initiate the cross-linking of the resin polymers, whilst some advanced packaging materials currently under investigation impose a maximum temperature constraint to avoid damage. Thermal imagery equipment integrated with the microwave oven can offer some information on the thermal state but such data is based on the surface temperatures. This paper describes computational models that can simulate the internal temperatures within each component of an assembly including the critical region between the chip and substrate. The results obtained demonstrate that due to the small mass of adhesive used in the joints, the temperatures reached are highly dependent on the material properties of the adjacent chip and substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the flip-chip assembly process, no-flow underfill materials have a particular advantage over traditional underfills as the application and curing of this type of underfill can be undertaken before and during the reflow process - adding high volume throughput. Adopting a no-flow underfill process may result in underfill entrapment between solder and fluid, voiding in the underfill, a possible delamination between underfill and surrounding surfaces. The magnitude of these phenomena may adversely affect the reliability of the assembly in terms of solder joint thermal fatigue. This paper presents both an experimental and mdeling analysis investigating the reliabity of a flip-chip component and how the magnitude of underfill entrapment may affect thermal-mechanical fatigue life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-alignment of soldered electronic components such as flip-chips (FC), ball grid arrays (BGA) and optoelectronic devices during solder reflow is important as it ensures good alignment between components and substrates. Two uncoupled analytical models are presented which provide estimates of the dynamic time scales of both the chip and the solder in the self-alignment process. These predicted time scales can be used to decide whether a coupled dynamic analysis is required for the analysis of the chip motion. In this paper, we will show that for flip-chips, the alignment dynamics can be described accurately only when the chip motion is coupled with the solder motion because the two have similar time-scale values. To study this coupled phenomenon, a dynamic modeling method has been developed. The modeling results show that the uncoupled and coupled calculations result in significantly different predictions. The calculations based on the coupled model predict much faster rates of alignment than those predicted using the uncoupled approach.