13 resultados para modelo computacional
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En la formación de estudiantes para docentes en matemáticas del proyecto curricular licenciatura en educación básica con énfasis en matemáticas (LEBEM), es importante para el desarrollo de nuestro quehacer profesional considerar aspectos relevantes que influyen en los procesos de enseñanza-aprendizaje, como lo son: las estructuras del pensamiento (en el sentido de los conocimientos previos de los estudiantes, sus dificultades, razonamientos y demás), el contexto y las situaciones de enseñanza que se proponen. Lo anterior nos llevó a reflexionar acerca de la manera en que tenemos en cuenta estos tres aspectos en el momento de diseñar un ambiente de aprendizaje, de manera que las construcciones realizadas por los estudiantes les sean significativas, lo cual implica que ellos puedan establecer conexiones con la utilidad que tiene el conocimiento en la resolución de problemas y la comprensión de fenómenos de la vida cotidiana.
Resumo:
La enseñanza y aprendizaje de temas matemáticos como la proporcionalidad directa usualmente se realiza modelando situaciones “reales” y “cotidianas”. Los profesores de matemáticas asumimos que tales situaciones se comportan en efecto de forma proporcional, pero en la realidad su comportamiento es diferente. Ello nos lleva a la tarea de identificar en la cotidianidad de los estudiantes, situaciones que se dejen modelar a través de funciones lineales, tarea difícilmente realizable, pero altamente formativa.
Aprender matemáticas en un entorno de álgebra computacional: los obstáculos constituyen oportuniades
Resumo:
Utilizar álgebra computacional no es tan fácil como puede parecer. Frecuentemente, los estudiantes encuentran obstáculos mientras trabajan en un entorno de álgebra computacional. En este artículo se distinguen los obstáculos globales y los locales, y se identifican los de ambas categorías. La teoría de la instrumentación proporciona un marco para interpretar el obstáculo como un desequilibrio entre los aspectos conceptual y técnico de un esquema de instrumentación. Se argumenta que explicitar los obstáculos y tratar de superarlos, conduce al desarrollo conceptual. En consecuencia, los obstáculos constituyen oportunidades de aprendizaje.
Resumo:
Esta investigación que forma parte de las tesis de maestría, se realiza en México con estudiantes de secundaria, de edades 14-15 años. El objetivo es dar a conocer las dificultades; que a partir de un análisis comparativo, tienen los alumnos al tratar de construir una expresión algebraica de segundo orden que defina el enésimo término al usar sucesiones figurativas. Para ello, se ha estado haciendo uso de dos de sus cuatro componentes del Modelo Teórico Local [MTL] (Filloy, 1999): modelo de enseñanza y de procesos cognoscitivos. Se realiza una evaluación diagnóstica, se clasifica a la población según los distintos perfiles: alto, medio y bajo rendimiento, para observar en entrevista clínica videograbada y elaborar un reporte de observaciones acorde al esquema de desarrollo de experimentación perteneciente al MTL.
Resumo:
Este trabajo tiene como objetivo dar argumentos en favor de la inclusión de los sistemas de álgebra computacional en el currículo de matemáticas desde el nivel medio de enseñanza hasta el nivel superior. Primero, se presentan algunos conceptos relativos al uso de estos sistemas en la educación. Después, se presentan varios ejemplos con el propósito de mostrar el poder de estos sistemas como auxiliares en la solución de problemas. Finalmente se hace una propuesta acerca de su uso en educación.
Resumo:
El cálculo diferencial e integral, es materia obligada en gran parte del currículo escolar y piedra angular en el desarrollo de la matemática. A pesar de ello en escuelas tanto a nivel medio como superior, los reportes de problemas en su enseñanza aprendizaje son frecuentes. Esta materia presenta un alto índice de reprobación, inclusive con alumnos que recursan. Este estudio muestra una fuerte tendencia, en la educación, a visualizar el cálculo como un patrón de fórmulas y procedimientos algebraicos, dejando fuera los aspectos conceptuales. En el mismo sentido Dreyfus (1990, 124), reporta que las investigaciones en Francia exhiben la tendencia de los estudiantes a los aspectos de procedimiento algorítmicos, dejando fuera los conceptuales.
Resumo:
Mostraremos a continuación la posibilidad de generar modelos matemáticos simples a partir de la explicación de un hecho físico. El marco teórico de partida es el de la explicación científica con la estructura del modelo nomológico deductivo. El uso de modelos matemáticos en este marco genera herramientas didácticas de distinto tipo, en este articulo desarrollamos brevemente el diseño de proyectos de investigación para los alumnos. El docente puede generar y luego utilizar estos proyectos de distintos modos, por ejemplo, como actividad de cierre de un curso, o también para generar una discontinuidad en el transcurso de la cursada, como actividad en paralelo que ocupe algún momento de las clases, etc.
Resumo:
El problema de investigación se plantea en cómo utilizar el Cabri II Plus para lograr la transposición didáctica de la noción de límite a contextos computacionales, transposición informática (Balacheff, 1994). Construyendo límites de sucesiones y límites de funciones, visualizamos el concepto permitiendo la comprensión de la definición formal, la validación de propiedades y enunciados matemáticos y la activación de un proceso cognitivo marcado por la relación dialéctica entre percepción y conceptualización durante la interacción con la interfase del sistema (Moreno, 2002), promoviendo una transformación a nivel epistemológico de la experiencia matemática del estudiante. Las actividades propuestas articulan las representaciones algebraicas, gráficas y numéricas de la noción de límite, a través del movimiento, visualizando el cambio gracias a la geometría dinámica.
Resumo:
Este trabajo tiene como objetivo principal mostrar, a los estudiantes de los niveles superiores, los procedimientos principales de construcción de modelos matemáticos para resolver situaciones problemáticas que se manifiestan en la realidad cotidiana en el desarrollo de una determinada actividad profesional y como objetivo específico establecer alternativas de tarifas sociales con destino a núcleos de clientes perfectamente identificados en cuanto a su calidad, por su escasa capacidad de pago, y aproximadamente delimitados en cuanto a la cantidad. Bajo la denominación de tarifa social de cualquier servicio público se entiende a aquellas tarifas que, siguiendo distintos mecanismos, se subsidian implícita o explícitamente, parcial o totalmente, para beneficiar a ciertos sectores de usuarios con un determinado fin. Para tener una herramienta de análisis que permita simular distintas escenarios con el fin de fijar los subsidios a la tarifa de los clientes residenciales y tomar decisiones al respecto, se elaboró un modelo matemático que describe esta situación. Después del análisis de validación del modelo, mediante el trazado de superficies y curvas de nivel con la ayuda del medio lógico Derive, se realizó una simulación numérica a fin de acotar los resultados posibles que satisfagan los requerimientos impuestos por la situación problemática a resolver. Finalmente se concluye el trabajo con la especificación de la tarifa social buscada.
Resumo:
En este trabajo se presenta un modelo para caracterizar el razonamiento estadístico de los estudiantes al interpretar la información que es representa por el gráfico de gajas. El origen de dicho modelo se motiva en una experiencia de aula que considera y aplica los resultados obtenidos en una investigación realizada como trabajo de grado de la Maestría en Docencia de las Matemáticas y adscrita a la línea de investigación en Educación Estadística de la Universidad Pedagógica Nacional en el año 2009. Esta investigación pretende categorizar el razonamiento estadístico de un grupo de estudiantes de secundaria en un colegio público de la ciudad de Bogotá. Para obtener dicha categorización se propuso comparar conjuntos de datos representados mediante gráficos de caja. y, se empleó la teoría de clasificación conocida como taxonomía SOLO, la cual a su vez fue articulada con siete elementos de razonamiento sugeridos por los autores del presente trabajo.
Resumo:
En el contexto del modelo de Van Hiele, se ha llevado a cabo un estudio comparativo de dos colecciones de descriptores para el mismo concepto: El de aproximación local en su manifestación de la recta tangente a la gráfica de una curva en un punto. A partir de las visualizaciones que se obtienen de los mecanismos llamados "haz de secantes" y del "zoom", se concluye que, en efecto, el nivel de razonamiento es independiente de la forma de abordar el concepto, de ese mecanismo particular usado para acercarse al mismo.
Resumo:
El objetivo de este trabajo es el de presentar una aplicación, llevada a cabo en un centro de enseñanza secundaria, de un modelo de decisión diseñado para situaciones de toma decisiones con múltiples expertos con información espero que en concreto dicho modelos utilizados para clasificar, de mayor a menor grado de influencia, un conjunto de posibles causas del mal comportamiento de los estudiantes en el aula, de acuerdo con las opiniones de un grupo de profesores de dicho centro.
Resumo:
Durante millones de años los seres vivos se han encontrado con numerosas situaciones adversas, es decir, con una enorme cantidad de problemas que han tenido que ir solucionando poco a poco mediante sucesivas adaptaciones. El éxito de la vida en innumerables entornos no es sino el reflejo de que los seres vivos han encontrado soluciones para los distintos problemas con los que se han enfrentado. Son varias las cuestiones que podemos plantearnos en relación a esta cuestión: ¿cuál es el mecanismo que ha permitido la supervivencia de los seres vivos en ambientes tan distintos?, ¿existe algún algoritmo matemático que subyazca en el mismo?, en este caso, ¿podría ser aplicable a otras situaciones y problemas? Los algoritmos genéticos son una de las herramientas que han nacido para responder a estas cuestiones.