5 resultados para métodos experimentales en pedagogía
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
El propósito de este trabajo consiste en mostrar de qué manera la programación en Mathematica 4.1 nos permite resolver ecuaciones diferenciales de la forma de manera interactiva por medio de botones. Estos botones operan sobre una ecuación diferencial dada y la transforman por medio de ciertas reglas, de manera que el proceso de solución se observa paso a paso. Se ha puesto especial interés en las ecuaciones exactas de la forma y en ecuaciones de este tipo que admiten factor integrante. Con estos botones se pretende que el estudiante, antes que realizar cálculos, conceptúe los métodos usados en la solución de las ecuaciones diferenciales descritas.
Resumo:
En el trabajo se aborda cómo el diseño de la disciplina Matemática en las carreras de ingeniería, puede contribuir a la formación y desarrollo del pensamiento matemático, impartiendo los métodos numéricos en el momento en que se estudia cada tema, resolviendo problemas vinculados con la especialidad y con un enfoque computacional de los mismos, logrando que los estudiantes se apropien del algoritmo de estos métodos y que además conozcan algunos de los software más difundidos por su eficiencia y puedan decidir cuál de ellos escoger. Este diseño se puso en práctica experimentalmente en el curso 1995-1996 en tres de las asignaturas de la disciplina lográndose buenos resultados, el que se validó en tres cursos siguientes y se generalizó a partir del curso 2000-2001.
Resumo:
Arquímedes es el matemático y científico de todos los tiempos, desde la Antigüedad hasta nuestros días; en él se personifican variedad de métodos para resolver situaciones matemáticas y científicas, además de ideas fundamentales que han acompañado la evolución de muchos conceptos de las matemáticas y las ciencias; entre ellas están las ideas sobre el cálculo integral, la geometría de los cuerpos redondos, la cuadratura de la parábola, la conceptualización sobre espejos y poleas, la palanca y las ideas sobre flotación de los cuerpos, a través de la experimentación. Es por ello que, siguiendo algunas de sus rutas, se desarrollará el taller “Algunas ideas matemáticas y físicas de Arquímedes”, mostrando a través de algunas de estas experiencias desarrollos metodológicos, e integración de ideas de las matemáticas con otras áreas del conocimiento científico. Además, estos métodos permiten desarrollar ideas, que pueden ser aplicadas en procesos de aprendizaje de algunos conceptos de las matemáticas, que son enseñados en la Educación Básica y Media de nuestros jóvenes. Asimismo, en este taller mostraremos algunos senderos de aprendizaje de las matemáticas, integrados a las ciencias naturales, siguiendo algunos métodos arquimedianos, en ambientes de la metodología de Aula Taller, donde el aprender haciendo, el uso de material tangible, el apoyo en guías de trabajo, el construir las ideas y los conceptos son, es la clave el conocimiento. Esto lo compartiremos con los maestros a través del estudio de los cuerpos redondos y las ideas de flotación de los cuerpos. Cabe aclarar, además que, ni la metodología ni el tema a trabajar han sido explorados en nuestro país. Es por ello que queremos compartirlo, ya que es una experiencia que hemos vivido en otros espacios y que ha tenido un buen resultado.
Resumo:
En este artículo se presenta parte de la experiencia desarrollada en la escuela de matemática del Instituto Tecnológico de Costa Rica sobre la enseñanza de métodos numéricos, aprovechando la disponibilidad casi generalizada de la hoja electrónica Excel. La programación de algoritmos se ha hecho con la incorporación de macros; además se presenta al lector la secuencia de instrucciones necesarias para la ejecución de los distintos métodos. Aunque en principio estos materiales corresponden a un curso de nivel universitario, puede utilizarse como idea inicial para adecuar algunos de los conceptos tratados a la enseñanza de la matemática a nivel de secundaria. Tal es el caso de la graficación de funciones, aprovechando la hoja electrónica para ilustrar conceptos de dominio, rango, amplitud y período de funciones trigonométricas, etc.
Resumo:
René Descartes publicó en 1637 su famosa Géométrie, un tratado donde aplica el álgebra a la geometría y desarrolla un original sistema de álgebra simbólica. En el tercer libro de la Géométrie enuncia, sin demostración, su célebre regla de los signos de Descartes. Durante dos siglos, el mundo matemático intentó sin éxito una demostración general y satisfactoria a los estándares de la época. Finalmente, Carl Frederick Gauss la demostró de la manera más general en 1828 recurriendo a métodos algebraicos. En este artículo, presentamos el tratamiento que la regla de los signos tiene en los libros de texto de álgebra y proponemos una justificación original alternativa apoyada en la idea de predicción que, hasta donde sabemos, no ha sido reportada en la literatura especializada.