19 resultados para errores en medidas experimentales
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En este trabajo se analizan los errores que cometen los sujetos al realizar una actividad relacionada con problemas matemáticos de carácter inductivo. Para ello, se detectan los errores, se explica el proceso que han seguido los sujetos en la resolución errónea del problema y se procede a su clasificación.
Resumo:
Este trabajo se enmarca dentro de una investigación más amplia cuyo principal objetivo es indagar sobre la capacidad de los estudiantes de educación secundaria para traducir y relacionar enunciados algebraicos presentados en los sistemas de representación simbólico y verbal. La recogida de datos se realizó con 26 estudiantes de 4º de ESO a los que se propuso la construcción de un dominó algebraico, diseñado para esta investigación, y su posterior uso en un torneo. En este artículo presentamos un análisis de los errores cometidos en dichas traducciones. Entre los resultados obtenidos, destacamos que los estudiantes encontraron mayor facilidad al traducir enunciados de su representación simbólica a su representación verbal y que la mayoría de los errores cometidos al traducir de la expresión verbal a la simbólica son derivados de las características propias del lenguaje algebraico.
Resumo:
En este trabajo se recoge un estudio de los errores que cometen los alumnos de bachillerato al resolver problemas de contrastes de hipótesis en los exámenes de la PAU (Prueba de Acceso a la Universidad). A raíz de éstos, se señalan aquellas dificultades y confusiones más frecuentes con las que tropieza el alumno, y se sugieren algunas alternativas para ayudar a superarlas, tratando de contribuir en el proceso de enseñanza-aprendizaje de esta materia.
Resumo:
El presente trabajo tiene por objetivo un análisis de los conocimientos matemáticos con los que los alumnos ingresan en la carrera del profesorado en matemática y astronomía del Instituto Superior del Profesorado “Dr. Joaquín V. González” de Buenos Aires (Argentina). Las conclusiones se apoyan en la experiencia de las autoras como Profesoras a cargo del Curso de Apoyo al Curso de Nivelación de la carrera antes mencionada. Esta investigación que se llevó a cabo a través de la observación y el dictado de las clases, lo que permitió analizar los errores más frecuentes y sus orígenes, los conceptos bien adquiridos, la concepción que los alumnos tienen de la Matemática y el perfil de los mismos. El análisis ha sido realizado sobre la base del aspecto constructivo del error. A partir del análisis realizado a lo largo de la investigación, se puede concluir que detrás de todo error hay un aprendizaje incompleto o erróneo.
Las igualdades incorrectas producidas en el proceso de traducción algebraico: un catálogo de errores
Resumo:
Propongo un catálogo para los errores que puedan encontrarse al realizar el proceso de traducción algebraico. El catálogo consta de tres categorías: errores en el uso de letras, errores en la construcción de expresiones algebraicas y errores en la construcción de la igualdad. Constaté la validez del catálogo con las igualdades incorrectas producidas por 258 estudiantes de bachillerato que trabajaron 13 problemas. Encontré que las producciones persistentes dan cuenta de una parte sustantiva del error total y que estas producciones contienen errores de las categorías antes citadas. Además, determinados errores se podrían asociar con tipos de problemas.
Resumo:
Al respecto de las múltiples angustias surgidas por docentes de matemáticas en formación entorno a las dificultades y errores evidenciados por estudiantes de básica segundaria y media en la construcción de pensamiento algebraico, se expone a continuación para el caso de la generalización algebraica los hallazgos logrados desde la investigación que recupera en primera instancia a manera de reseña los referentes teórico conceptuales, las definiciones pertinentes y la clasificación de las dificultades y errores en la educación matemática especialmente en el caso de algebra; de igual manera se detallan características y acuerdos conceptuales entorno a razonamiento, razonamiento algebraico; esta ponencia evidencia los presupuestos e ideales para la educación matemática y la enseñanza del algebra para finalmente establecer la relación y justificación conceptual entre: sistemas de representación (errores); las dificultades (comprensión) y razonamiento algebraico. Con la exposición de ejemplos logrados en las experiencias de aula y analizados producto del trabajo de campo en este estudio, se presenta a manera de propuesta los comentarios, reflexiones y recomendaciones que permitirán al futuro docente de matemáticas diseñar un modelo de competencia formal y cognitivo para entender y actuar en situaciones de la enseñabilidad que se dan en el entorno educativo en especial en relación al razonamiento algebraico.
Resumo:
Los años de educación formal reportan que la enseñanza y aprendizaje de la Matemática trae consigo muchas dificultades al ser tratadas. Se ha transformado en objeto de investigación explorar el origen de estos motivos por diversos investigadores, encontrándose que pueden ser de origen epistemológico, cognitivo y didáctico. No necesariamente todos de forma dependiente. El álgebra por su naturaleza simbólica es un área que reporta diversidad de dificultades provocando errores desde que los estudiantes inician la interacción con ésta. Las causas son múltiples, tratamiento inadecuado de los símbolos, generalización aritmético algebraica, el álgebra como proceso de operacionalización, falta de comprensión por quien la enseña, uso inadecuado del lenguaje, ausencia en el desarrollo abstracto de estudiantes, etc. Tomando en cuenta estos múltiples aspectos es posible proponer estrategias que releven el uso de errores como instrumento estratégico del aprendizaje y no como un castigo evaluativo. Este trabajo se inscribe dentro de la línea de didáctica del álgebra. Se presenta una caracterización del pensamiento algebraico, el cual permite de alguna manera caracterizar dificultades y errores en el desarrollo de tareas en el nivel escolar y estudiantes para profesores. Finalmente se entregan algunas conclusiones y reflexiones futuras para enmarcar en el desarrollo profesional de profesores en ejercicio.
Resumo:
En este trabajo utilizamos los razonamientos que llevan a cabo doce alumnos de Secundaria durante la resolución de una tarea matemática para detectar los errores en que incurren y las dificultades que encuentran en su ejecución. Se les propone la tarea en un contexto de entrevista semiestructurada en la que se guía a los alumnos por el camino a seguir. Entre los datos que se obtienen, se encuentran los errores aparecidos en el desarrollo de la tarea. El análisis de dichos errores se ha hecho siguiendo las clasificaciones de Evans (González, 1998) y Radatz (1979), y se conecta dichos errores con dificultades específicas siguiendo la clasificación de Socas (1997). Se concluye este trabajo con algunas reflexiones que conside-ramos interesantes para profesionales de la enseñanza de las matemáticas.
Resumo:
En este taller (de una sesión) se proponen ciertas actividades que conectan el algebra con diversas situaciones del mundo real. La idea es hacer que los presentes desarrollen las tareas para que conozcan otras alternativas para construir conceptos como tasa de cambio o pendiente, modelamiento de datos, líneas de mejor ajuste, datos atípicos, errores en experimentos, bases de ingenierías civil, uso de modelos matemáticos para hacer predicciones y cuando los modelos matemáticos no describen la realidad de los experimentos. En el taller se realizaran tres actividades: A. FORTALEZA DE LAS VIGAS B. ATANDO NUDOS C. CONSTRUCCION DEL TRIACONTRAEDRO ROMBICO (LAMPARA DANESA) El realizar estas experiencias nos ayudaran a entender los estados de conflicto que entra el estudiante a la hora de procesar, adquirir y afianzar el conocimiento
Resumo:
A partir de un estudio en proceso con profesores del nivel medio sobre errores en el uso de expresiones numéricas que contienen exponentes y radicales se propone una forma de enseñanza basada en recursos de visualización usados en la graficación de funciones. Además de reconocer la visualización como la habilidad de los sujetos para formar y manipular imágenes mentales se acepta como la habilidad para trazar diagramas apropiados para representar un concepto matemático o un problema. Son reconocidos el valor y la importancia de las imágenes visuales, en los diagramas y de otras herramientas visuales en los procesos heurísticos, para el descubrimiento, en la enseñanza de la matemática. Se propone una forma integral de abordar el aprendizaje de exponentes y radicales que consideran recursos visuales, numéricos y algebraicos para obtener sus propiedades. La graficación de funciones que comprenden formas de expresiones con exponentes y radicales, realizada por puntos, por intervalos y en forma global, favorece el análisis de la forma en que cambian las variables e ilustra el dominio de definición de las expresiones algebraicas. Del análisis de las representaciones gráficas se obtienen las propiedades de expresiones numéricas que incluyen exponentes y radicales definidas tanto en los números reales como en los complejos. Utilizando el álgebra de estas curvas se obtienen otras propiedades numéricas. Se hace uso de la calculadora graficadora y la computadora para obtener las gráficas de las funciones y para verificar las propiedades numéricas que se establecen.
Resumo:
¿A qué recuerda ese residuo de infelicidad (imperfección, inexactitud) que jamás llega a compensar la piedra más preciosa (fórmula, igualdad) y cuyo conocimiento determina el número exacto de quilates (perfección, igualdad) a la que debe aproximarse el diamante final (sucesión, serie, límite)? Sólo conociendo bien ese residuo evitaremos errores de cálculo, errores en la igualdad.
Resumo:
Con este material pretendemos divulgar la matemática implicada en los números de identificación tales como NIF, ISBN, EAN... La aritmética modular se utiliza para lijar el dígito de control, y algoritmos sencillos permiten al ordenador descubrir muchas falsificaciones o posibles errores en el número de identificación de la tarjeta, producto o persona. Los esquemas de codificación más usuales detectan todos los errores simples, esto es, cuando se confunde un dígito por otro pero, sin embargo, no descubren otros tipos de errores que, aunque son menos frecuentes, son posibles. El álgebra y la divisibilidad ayudan a elegir esquemas de codificación mas seguros.
Resumo:
En ese trabajo se analizan las respuestas de estudiantes de secundaria a tareas numéricas susceptibles de resolverse haciendo uso de sentido numérico. Se analizan las estrategias y los razonamientos de sentido numérico frente a los procedimientos algorítmicos y de aplicación de reglas. Se observa cómo el uso del sentido numérico queda condicionado por dificultades y errores en conceptos numéricos propios de niveles básicos y por el tipo de actividad. Las tareas con enunciados semejantes a los tradicionales presentan mayor aparición de reglas y algoritmos.
Resumo:
En estadística y probabilidad encontramos diferentes paradojas de solución adsequible a los estudiantes que permiten organizar actividades didácticas en la enseñanza y aprendizaje. En este trabajo describimos la paradoja de Simpson, que produce múltiples errores en la interpretación de la asociación y correlación. Describimos la paradoja y su historia, algunas soluciones y ejemplos. También analizamos los contenidos estadísticos trabajados en su solución, así como los posibles razonamientos erróneos de los estudiantes.
Resumo:
Este documento es una síntesis de una propuesta didáctica para modelar estadísticamente, errores de medición en las ciencias naturales. El origen de este trabajo fue motivado por cuatro cuestiones: la primera es la enseñanza del error como requisito para el currículo, los estándares curriculares establecen que un error es un punto en uno de los caminos hacia la verdad y, cada punto en ese camino, es un error de mayor o menor magnitud. Se vive en un mundo lleno de incertidumbres donde a nivel físico no existen verdades absolutas, por tanto, se vive con el error permanentemente, la segunda es la escasez de recursos didácticos para atender la enseñanza de error de medición en el aula teniendo en cuenta la revisión bibliográfica realizada, la tercera es el manejo interdisciplinar que se le puede dar al error de medición en el aula, y por último, es el uso de herramientas tecnológicas para el desarrollo de modelos o representaciones visuales acerca de éste tema en el aula, la importancia del error de medición en las ciencias y el tratamiento estadístico del error de medición en el aula, como instrumento para evaluar de forma cuantitativa la precisión y exactitud de los resultados obtenidos a partir de procesos experimentales.