3 resultados para caos
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Al respecto de las múltiples angustias surgidas por docentes de matemáticas en formación entorno a las dificultades y errores evidenciados por estudiantes de básica segundaria y media en la construcción de pensamiento algebraico, se expone a continuación para el caso de la generalización algebraica los hallazgos logrados desde la investigación que recupera en primera instancia a manera de reseña los referentes teórico conceptuales, las definiciones pertinentes y la clasificación de las dificultades y errores en la educación matemática especialmente en el caso de algebra; de igual manera se detallan características y acuerdos conceptuales entorno a razonamiento, razonamiento algebraico; esta ponencia evidencia los presupuestos e ideales para la educación matemática y la enseñanza del algebra para finalmente establecer la relación y justificación conceptual entre: sistemas de representación (errores); las dificultades (comprensión) y razonamiento algebraico. Con la exposición de ejemplos logrados en las experiencias de aula y analizados producto del trabajo de campo en este estudio, se presenta a manera de propuesta los comentarios, reflexiones y recomendaciones que permitirán al futuro docente de matemáticas diseñar un modelo de competencia formal y cognitivo para entender y actuar en situaciones de la enseñabilidad que se dan en el entorno educativo en especial en relación al razonamiento algebraico.
Resumo:
A partir de la novela El curioso incidente del perro a medianoche de Mark Haddon, en la que se plantean diversos temas matemáticos, proponemos una serie de actividades para el alumno. A través de este trabajo se trata de demostrar que la literatura no es ajena a las matemáticas, además de animar a la lectura y enseñar temas matemáticos de interés en la actualidad como la criptografía de clave pública, la teoría de la probabilidad y la teoría del caos, que son aplicables a problemas del mundo real.
Resumo:
Por quinta vez puso cuatro motas de tinta en el papel, les puso nombres (A, B, C, D) y los unió con segmentos para formar un cuadrilátero. Luego señaló los puntos medios de sus cuatro lados y los conectó formando otro cuadrilátero (P, Q, R, S). Ahí estaba el problema. Ese cuadrilátero interior siempre resultaba ser un paralelogramo pusiera como pusiera los cuatro puntos originales. ¿Acaso había orden en el caos? Por un momento pensó que quizá había truco, que tal vez sucedía así porque la gente ponía los puntos de formas similares. Pero ya había probado configuraciones muy raras, incluso dejó que los segmentos del cuadrilátero ABCD se interceptasen, y siempre obtenía idéntico resultado. No, lo que parece cumplirse para cualquier caso no es ningún truco, sino un teorema que demostrar.