7 resultados para Topología
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Este artículo describe una actividad en la cual los alumnos adquieren algunos conceptos básicos sobre topología de forma intuitiva. Teniendo en cuenta su principal ventaja, el aprendizaje cooperativo, el puzzle de Aronson es la herramienta que proporciona la metodología más conveniente para desarrollar esta experiencia.
Resumo:
A partir de tres vectores linealmente independientes en R3 , y bajo otras condiciones, se construye una norma ' sobre R3 cuyas esferas de centro G y radio r > 0, son troncos de dipirámide regular octagonal afín recta de centro G. También, dado un poliedro F de este tipo, se establece que F, es también un cuerpo normado, respecto a esa norma ' construida a partir de F. La representación unificada de ' permite el estudio riguroso y versátil de la estructura geométrica de F, asistida por la noción de homotecia.
Resumo:
Através de la ventana la ciudad aparece conexa y cubriendo el mundo entero –Trude–, pero al salir a la calle veo rectángulos de cielo entre los edificios contiguos de cada manzana reticular –Zora–. El carácter conexo de la ciudad era sólo aparente, las casas y rascacielos no se adosan a sus vecinos, sino que mantienen una separación mínima que les permita vibrar sin peligro durante un seísmo. En el paseo me despisto. Pensaba haber salido ya de la ciudad, pero todavía estoy en ella –Zoe–. Supongo que atravieso limbos imperceptibles buscando un centro inexistente o ubicable en cualquier lugar –Pentesilea–. Desciendo las escaleras que conducen al metro y otra ciudad aparece bajo tierra –Argia–, más bulliciosa si cabe que la de arriba. El mapa de estaciones y recorridos reproduce en el plano un ovillo tridimensional –Zobeida– que recorren a diario millones de personas. Está salpicado de signos indescifrables que, en lugar de ayudarme, inducen a engaño –Ipazia–. Cuando vuelvo a emerger a la luz del día me encuentro un panorama similar. Inconscientemente elaboro relaciones de equivalencia –Zirma– para poder fijar imágenes, ideas y cosas en mi memoria.
Resumo:
Cuzco, Ámsterdam: ciudades reales, visibles y circulares como Bram, en Francia, y la Connaught Place de Nueva Delhi, en India. La retícula de calles rectilíneas, ortogonal o no, es a la vez huella y símbolo de la forma urbana. En ocasiones inspira nombres numéricos para sus calles. En Nueva York, desde el sur de Manhattan hasta el Bronx, las calles paralelas al eje E-O se ordenan y nombran según los números naturales (de la 1st a la 242th street). De igual modo, las avenidas perpendiculares que discurren N-S van de la 1a a la 11a, comenzando por el Este. No tan extensa es la retícula de Mandalay, en Myanmar, donde 90 de las calles N-S están numeradas de Este a Oeste, y 44 de sus perpendiculares de Sur a Norte. En la retícula de Miramar (Argentina) las calles en una dirección reciben nombres pares; las otras, impares. No es extraño que en ámbitos tan geométricos como los de esas ciudades nombre y número se confundan.
Resumo:
Para conocer un todo no es necesario el conocimiento exhaustivo de cada uno de los elementos que lo componen. Basta con determinar sus elementos fundamentales y saber qué leyes determinan la relación entre ellos y los demás. Solamente un todo pequeño (finito) puede conocerse por completo, elemento a elemento. Los todos más vastos (infinitos), jamás. Kublai se da cuenta de que no hay otro modo de conocer conjuntos tan grandes. El conjunto de los números naturales se conoce a partir de un elemento (uno) y de una ley de formación (uno más uno: dos). Un espacio vectorial se conoce a partir de los vectores de su base y del modo en que operan (suman y multiplican) entre ellos y con los escalares de un cuerpo K.
Resumo:
El artículo presenta un método, de naturaleza indirecta, que puede ayudar a probar ciertos resultados que involucran sucesiones y funciones continuas que frecuentemente aparecen en la topología de R^n.
Resumo:
En este artículo se presentan cuatro propiedades topológicas del conjunto de los números reales, R, que, evidentemente o no, resultan ser todas equivalentes al Axioma del Extremo Superior (AES).