3 resultados para También la luz es un abismo
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Los ingenieros durante su preparación y después en su vida profesional utilizan los métodos de la matemática clásica. El estilo usual de exposición de la matemática está influenciado por la elaboración de los fundamentos lógicos de esta ciencia, lo que en ocasiones dificulta la comprensión de conceptos y procesos de gran utilidad para el ingeniero. Por ello, en muchas ocasiones los profesores de las asignaturas de la especialidad llevan a sus alumnos sus propias ideas de cómo usar el aparato matemático y cuales son los procedimientos más sencillos por cuyo intermedio se pueden dominar los métodos que necesita el ingeniero. Entonces se tienen varias interrogantes a responder, entre ellas: ¿Cuales son los objetivos de la matemática en ingeniería? ¿Cuales son las habilidades sobre las cuales se debe trabajar? En este grupo de discusión se profundizará en las interrogantes anteriores, y en general en los elementos que intervienen en el diseño de una asignatura de Matemática para ingeniería, así como en aquellos que deben atenderse durante el desarrollo del proceso docente y que inciden favorablemente en la actitud de los estudiantes de ingeniería hacia el estudio de las asignaturas de matemática y en su formación profesional.
Resumo:
El modelo de Van Hiele aporta una descripción del proceso de aprendizaje de la Geometría postulando la existencia de unos niveles de pensamiento, que suponen unas formas peculiares de razonar. Para este trabajo se extrajeron los principales descriptores característicos de cada nivel de razonamiento geométrico y se operacionalizaron a través de cuatro tipos de instrumentos que recogen los datos de los contenidos específicos de los textos en cada grado. La muestra estuvo constituida por 24 libros de texto de Matemática de Educación Básica (grados 1 a 9), de uso frecuente en el sistema educativo venezolano. Los resultados obtenidos confirman el desarrollo de niveles de razonamiento geométrico, desde el nivel l (visualización) hasta el nivel 3 (deducción informal) en los contenidos presentes en los textos analizados, a excepción de los contenidos de triángulos y rectas, que se desarrollan hasta el nivel 4 (deducción formal). También reflejan que, en general, los contenidos geométricos presentes en la colección de textos analizados siguen un patrón bastante consistente y que el nivel de razonamiento requerido se incrementa gradualmente, obteniéndose un progreso de los niveles presentes en la secuencia ascendente de los textos.
Resumo:
Con el objeto no de introducir al estudiante universitario a la noción de función inversa sino de reorganizar ideas, darle significado a unas y resignificar otras (es decir, ayudarlo a aprehender el concepto) se elaboró un razonamiento, basado en ideas previas del alumno, que concluye en el Teorema del tubo fluorescente. Este Teorema permite, a partir del gráfico de una función biyectiva, obtener el de su inversa de un modo más sencillo y seguro que el de los textos tradicionales y, simultáneamente, aporta un claro mensaje conceptual. El cambio en la percepción del tema (en el 75 a 80% de los estudiantes) y la seducción de la inversa “instantánea” son superados por la idea (desde ahora evidente) que una función y su inversa son expresiones de una misma relación observada desde distintos puntos de vista.