4 resultados para TERCEIRA DIMENSÃO (MODELAGEM COMPUTACIONAL) $$2larpcal
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Aprender matemáticas en un entorno de álgebra computacional: los obstáculos constituyen oportuniades
Resumo:
Utilizar álgebra computacional no es tan fácil como puede parecer. Frecuentemente, los estudiantes encuentran obstáculos mientras trabajan en un entorno de álgebra computacional. En este artículo se distinguen los obstáculos globales y los locales, y se identifican los de ambas categorías. La teoría de la instrumentación proporciona un marco para interpretar el obstáculo como un desequilibrio entre los aspectos conceptual y técnico de un esquema de instrumentación. Se argumenta que explicitar los obstáculos y tratar de superarlos, conduce al desarrollo conceptual. En consecuencia, los obstáculos constituyen oportunidades de aprendizaje.
Resumo:
Este trabajo tiene como objetivo dar argumentos en favor de la inclusión de los sistemas de álgebra computacional en el currículo de matemáticas desde el nivel medio de enseñanza hasta el nivel superior. Primero, se presentan algunos conceptos relativos al uso de estos sistemas en la educación. Después, se presentan varios ejemplos con el propósito de mostrar el poder de estos sistemas como auxiliares en la solución de problemas. Finalmente se hace una propuesta acerca de su uso en educación.
Resumo:
El cálculo diferencial e integral, es materia obligada en gran parte del currículo escolar y piedra angular en el desarrollo de la matemática. A pesar de ello en escuelas tanto a nivel medio como superior, los reportes de problemas en su enseñanza aprendizaje son frecuentes. Esta materia presenta un alto índice de reprobación, inclusive con alumnos que recursan. Este estudio muestra una fuerte tendencia, en la educación, a visualizar el cálculo como un patrón de fórmulas y procedimientos algebraicos, dejando fuera los aspectos conceptuales. En el mismo sentido Dreyfus (1990, 124), reporta que las investigaciones en Francia exhiben la tendencia de los estudiantes a los aspectos de procedimiento algorítmicos, dejando fuera los conceptuales.
Resumo:
El problema de investigación se plantea en cómo utilizar el Cabri II Plus para lograr la transposición didáctica de la noción de límite a contextos computacionales, transposición informática (Balacheff, 1994). Construyendo límites de sucesiones y límites de funciones, visualizamos el concepto permitiendo la comprensión de la definición formal, la validación de propiedades y enunciados matemáticos y la activación de un proceso cognitivo marcado por la relación dialéctica entre percepción y conceptualización durante la interacción con la interfase del sistema (Moreno, 2002), promoviendo una transformación a nivel epistemológico de la experiencia matemática del estudiante. Las actividades propuestas articulan las representaciones algebraicas, gráficas y numéricas de la noción de límite, a través del movimiento, visualizando el cambio gracias a la geometría dinámica.