40 resultados para TEOREMAS INDICATIVOS

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En éste artículo se presenta una propuesta para la enseñanza de los Teoremas Fundamentales del Cálculo por medio de la utilización del software Geogebra, éste software permite la visualización de cada uno de los teoremas fundamentales del cálculo, a través de la interpretación geométrica de la integral como función de área y la interpretación de la derivada como función de pendientes, posteriormente se relacionan los procesos inversos de integración y derivación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This theoretical paper presents some dimensions considered in the literature to analyze proof in the teaching and learning of mathematics. In order to show how different types of proofs can be used with students of different levels, we use these dimensions to analyze four proofs of the Pythagorean proposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nivel educativo la noción de derivada se enseña en los cursos regulares de cálculo, pero por lo general, siempre en la forma en que fue definida por Cauchy, lo que implica un procedimiento se hace necesario hacer una factorización. Constantin Caratheodory establece una definición diferente. Esta definición presenta tres aspectos didácticos destacados: Nos muestra que el proceso de acercamiento de las pendientes de las secantes a la pendiente de la tangente es continuo y por tanto, la continuidad es esencial para la derivabilidad, la segunda parte se refiere a la facilidad de la derivación como un proceso de factorización repetitivo y no como cálculo de límites, así como simplicidad en la demostración de teoremas de linealidad, regla de la cadena, algebra de derivadas (suma, producto y cociente), aplicado a funciones polinómicas de valor real y la tercera es que a nivel escolar se generan alternativas en la enseñanza del cálculo a través de la implementación de conceptos nuevos, con el fin de evitar procedimientos tediosos que se tienen con las definiciones tradicionales como la de Cauchy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se trata de un libro escrito por un grupo de estudiantes del Doctorado de Didáctica de la Matemática de la Universidad de Granada, con intereses y procedencias muy diversas pero con un interés y preocupación común por la enseñanza de la geometría. En este libro nos centramos en el trabajo de la geometría plana a través del papel, un material cercano, versátil, de bajo coste, a la par que interesante. Proponemos una serie de tareas variadas con indicaciones para el profesor. También se incluyen las soluciones a las tareas planteadas y, por último, presentamos las tareas en forma de fichas para que el profesor pueda fotocopiarlas y llevarlas directamente al aula.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente trabajo se desprende de la práctica docente que se está llevando a cabo en el Centro Educativo Femenino de Antioquia (CEFA) en la ciudad de Medellín con estudiantes del grado décimo, el cual tiene como intención primordial retornar la geometría al aula de clase como una herramienta que facilita la interpretación de las ideas matemáticas y físicas, empleando la metodología de aula-taller como fundamento para alcanzar tal fin. Hasta ahora se ha logrado despertar un relevante interés en el manejo del lenguaje geométrico y una mejor interpretación de algunos conceptos como el teorema de Pitágoras y el número Pi, a partir de uso del material concreto que ayuda al estudiante a alcanzar una mejor apropiación de dichos conceptos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arquímedes es el matemático y científico de todos los tiempos, desde la Antigüedad hasta nuestros días; en él se personifican variedad de métodos para resolver situaciones matemáticas y científicas, además de ideas fundamentales que han acompañado la evolución de muchos conceptos de las matemáticas y las ciencias; entre ellas están las ideas sobre el cálculo integral, la geometría de los cuerpos redondos, la cuadratura de la parábola, la conceptualización sobre espejos y poleas, la palanca y las ideas sobre flotación de los cuerpos, a través de la experimentación. Es por ello que, siguiendo algunas de sus rutas, se desarrollará el taller “Algunas ideas matemáticas y físicas de Arquímedes”, mostrando a través de algunas de estas experiencias desarrollos metodológicos, e integración de ideas de las matemáticas con otras áreas del conocimiento científico. Además, estos métodos permiten desarrollar ideas, que pueden ser aplicadas en procesos de aprendizaje de algunos conceptos de las matemáticas, que son enseñados en la Educación Básica y Media de nuestros jóvenes. Asimismo, en este taller mostraremos algunos senderos de aprendizaje de las matemáticas, integrados a las ciencias naturales, siguiendo algunos métodos arquimedianos, en ambientes de la metodología de Aula Taller, donde el aprender haciendo, el uso de material tangible, el apoyo en guías de trabajo, el construir las ideas y los conceptos son, es la clave el conocimiento. Esto lo compartiremos con los maestros a través del estudio de los cuerpos redondos y las ideas de flotación de los cuerpos. Cabe aclarar, además que, ni la metodología ni el tema a trabajar han sido explorados en nuestro país. Es por ello que queremos compartirlo, ya que es una experiencia que hemos vivido en otros espacios y que ha tenido un buen resultado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las deducciones que a lo largo de la historia se han realizado en torno al Teorema de Pitágoras pueden ayudar en el proceso de enseñanza-aprendizaje que realmente necesitan nuestros estudiantes, con el fin de que comprendan los conceptos a través de la reconstrucción de un método, de tal manera que no mecanicen reglas sino mas bien se logre aumentar y relacionar los conceptos adquiridos previamente de tal manera que se logre una mejor comprensión. Usaremos el enfoque histórico como una propuesta metodológica que actué como motivación para el alumno, ya que por medio de ella el estudiante descubrirá como generar los conceptos a través de métodos que aprenderá en clase. Discutiremos los conceptos y propiedades fundamentales de magnitudes, tales como la longitud y el área de figuras geométricas dadas en una y dos dimensiones, repasaremos los conceptos del producto notable del cuadrado de la suma de dos cantidades desde el punto de vista geométrico lo cual nos ayudara a inducir la demostración del Teorema de Pitágoras a través de triángulos rectángulos notables e isósceles rectángulos, tomando en consideración el área de los cuadrados que se encuentra en los lados de dichos triángulos. Esto nos ayudara a recalcar la generalización del Teorema de Pitágoras a través de figuras regulares. Las deducciones se harán pasando de la rama de la matemática llamada Álgebra, conjugándola o dándole soporte con otra que muestra la forma estructural, como lo es la Geometría.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este artículo mostraremos unas extensiones del Teorema de Pitágoras en su acepción geométrica, tomando en consideración el área de las figuras geométricas que están sobre los lados de un triángulo rectángulo y de esta manera ver que se cumple la relación Pitagórica para cualquier tipo de figuras que cumplan cierta condición. En particular, esta extensión la vamos a realizar usando las cuadraturas del rectángulo o del triángulo, como por ejemplo para el triángulo equilátero y luego para los semicírculos o las lúnulas, para lo cual cuadratura es lo mismo que decir área.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho apresenta resultados parciais da pesquisa de Doutorado em Ensino de Ciências e Matemática da Universidade Luterana do Brasil que está em andamento. Nesta investigação é proposto um estudo sobre o comprometimento dos alunos no processo de aprendizagem em Matemática. Objetivando determinar os prováveis fatores que permeiam este comprometimento aplicou-se um questionário a 128 alunos de cinco turmas do 3° ano do Ensino Médio de uma escola federal de Porto Alegre - Rio Grande do Sul - Brasil. Este instrumento se constituiu de um primeiro bloco, denominado Perfil, com propósito de elaborar o perfil dos alunos, um segundo, chamado Aprendizagem, buscando informações sobre o processo de aprendizagem em matemática e um terceiro intitulado, Dominio Afetivo, dados sobre os sentimentos expressados em relação à matematica. Com a análise estatística das respostas, pode-se compreender melhor este comprometimento e traçar alguns indicativos que influem na aprendizagem em Matemática destes discentes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el presente trabajo se expone un manera novedosa para generar números irracionales a partir del concepto de cortadura relativo a una serie aritmética natural e infinita. Se enuncia un teorema respectivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente investigación surge en el programa “perfeccionamiento en matemática para profesores de enseñanza media” realizado en el IUFM le Mirail, Universidad de Toulouse, Francia. El estudio consiste en el diseño de una propuesta didáctica para el aprendizaje de la ecuación vectorial de una recta en el espacio, en estudiantes de 16 a 18 años, el interés nace por la incorporación de estos temas en el curriculum nacional. Para el diseño de la propuesta se utiliza elementos de la Teoría Antropológica de lo Didáctico (TAD), donde se entenderá como organización matemática, a un conjunto de tipos de tareas, de técnicas o procedimientos para resolver estas tareas y de definiciones, propiedades y teoremas que permitan describir y justificar la resolución de la tarea. Entre los elementos que aportan en el surgimiento de la organización matemática, se distinguen, tipos de tareas como, establecer si puntos del plano o el espacio son colineales y determinar las condiciones para que un tercer punto sea colineal a dos puntos dados, en el plano o en el espacio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este curso corto utilizamos distintas aplicaciones de geometría dinámica para realizar construcciones geométricas en el modelo de Poincaré para geometría hiperbólica con el propósito de investigar y determinar la naturaleza de algunos teoremas de geometría para la enseñanza secundaria y superior. De esta forma clasificamos algunos de los teoremas de geometría plana como neutrales, estrictamente euclidianas o estrictamente hiperbólicos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las clases de matemáticas no debieran tener como objetivo fundamental el aprendizaje de contenidos (definiciones, teoremas, axiomas…) que posteriormente serán aplicados a la resolución de un gran listado de ejercicios y problemas propuestos por el profesor y que justificará el aprendizaje de dichos contenidos, sino que, por el contrario, debieran partir con un problema concreto y familiar para el alumno. Una vez planteado éste y discutido por todos, estudiantes y profesor, traerá como consecuencia la obligación de resolverlo y por tanto la necesidad del aprendizaje de las técnicas que son necesarias para ello y recurrir al uso de tecnología disponible. Es muy importante destacar que durante todo el proceso el alumno hace conjeturas que irá verificando en cada paso. Se dará cuenta que algunas de las conjeturas que hizo son correctas y que otras no lo son, es decir, cometerá errores y aciertos, en función de los cuales irá cimentando su aprendizaje. Pero, por sobre todo, debe aprender que “va al colegio a equivocarse”, pero que no debe quedarse en el error, que en la discusión con sus compañeros y el profesorado encontrará la(s) solucione(s), que es probable que más de una sirva, pero que también unas son mejores que otras, que en algunos casos hay una solución óptima, en definitiva irá “aprendiendo a aprender”. Se ilustra lo anterior planteando resolver un clásico problema de construcción de cajas utilizando como herramienta de aprendizaje el software DERIVE 5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El rol del aprendizaje significativo mediante la utilización de nuevas estrategias de enseñanza. Este aprendizaje involucra un proceso en el que lo que aprendemos es el producto de la información nueva, interpretada a la luz de lo que ya sabemos. Para que haya aprendizaje significativo, es necesario que el alumno pueda relacionar el material de aprendizaje con la estructura de conocimientos de que ya dispone. De esta forma, junto con la motivación favorable para la comprensión, y, los esfuerzos que requiere, una condición esencial del aprendizaje de conceptos será que estos se relacionen con los conocimientos previos de los alumnos. El nuevo conocimiento, que queremos que el alumno aprenda en esta oportunidad, surgirá de un adecuado desarrollo del razonamiento deductivo y manejo de los conocimientos previos. Entendiendo por razonamiento deductivo al proceso de razonamiento en que, para obtener una conclusión lógicamente necesaria a partir de ciertas premisas, los pasos están encadenados siguiendo ciertas reglas lógicas y son justificados rigurosamente. Las justificaciones están basadas en los axiomas y definiciones de la teoría respectiva, en teoremas demostrados con anterioridad y en las premisas o hipótesis del problema o teorema. El docente debe ayudar al estudiante a desarrollar y usar el poder del razonamiento deductivo comprometiéndolo permanentemente a pensar, analizar y deducir conjeturas en clase, además debe crear y seleccionar tareas apropiadas que puedan involucrar la generalización, la organización de datos para validar o refutar una conjetura. Un grupo de bachillerato del último año desarrolló la demostración de un teorema de convergencia de series, con los resultados de un 46% que la realizó exitosamente, versus un 36% que no lo logró. Los alumnos que lograron hacer la demostración, no eran los más estudiosos pero tenían una buena capacidad de razonamiento. En cambio los que generalmente preparan las evaluaciones y que se apoyan mucho en la memoria, no lograron un buen desempeño.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo de este artículo es presentar varias pruebas visuales sobre la irracionalidad de raíz de 2, las cuales no son muy conocidas comparadas con otras pruebas, como por ejemplo, las demostraciones del teorema de Pitágoras. Además, esas demostraciones pueden ser útiles como una alternativa a la clásica demostración griega y de esta forma se intentará llamar la atención de los alumnos.