5 resultados para Sociabilidades virtuales
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
El concepto de límite es importante en la educación media, dado que es relevante para introducir otros conceptos como continuidad, derivada, integral, entre otras; de igual manera, sabemos desde diversos autores y desde nuestra experiencia con el aprendizaje de límites, que su enseñanza ha sido algorítmica y tradicional, por lo tanto, se hace necesario replantear este tratamiento y proponer una forma dinámica, para que el estudiante pueda superar algunos de los obstáculos propuestos por Sierpinska (1987). Para esto, proponemos diseñar actividades que busca tratar y/o superar el obstáculo geométrico referido al concepto de límite, basado en un trabajo colaborativo que tendrá lugar en sesiones virtuales en horarios extraclase, que estarán apoyadas por sesiones presenciales (dentro del aula).
Resumo:
En este documento, se presentarán las etapas para diseñar un Modelo Instruccional en ambientes virtuales interactivos para la enseñanza de los números Reales, que tiene en cuenta: la formación matemática de los estudiantes, sus “niveles”, sus ritmos de aprendizaje, sus obstáculos en el aprendizaje y el tiempo oficial propuesto por la institución educativa para abordar los temas. Además, se explicitan, organizan y relacionan muchos de los elementos que se conjugan, y se camuflan, en la enseñanza y el aprendizaje de los temas matemáticos. Este diseño plantea ciertos elementos para el análisis del Discurso Matemático, del discurso didáctico y toma ciertos resultados de las investigaciones en Educación Matemática (Taxonomía SOLO y la Teoría de Súperítemes entre otras) para poner en relación los niveles en el discurso didáctico con los niveles de abstracción de los estudiantes.
Resumo:
Al introducir las nuevas tecnologías a los escenarios escolares se provocan reacciones (Chevallard, 1992) debido a que altera la armonía del Sistema Didáctico (el cual está compuesto por tres componentes; estudiantes, profesor y el saber). La relación entre los componentes del sistema didáctico se modifican debido a que existe un instrumento mediador que participa transformando las prácticas. Este proceso de integración requiere establecer las condiciones de equilibrio del Sistema Didáctico, al replantear el dominio del conocimiento, al caracterizar la interacción entre los estudiantes y el profesor, al ubicar el papel de la tecnología en el currículo, Laborde, (2001) y desde la perspectiva socioepistemológica, (Cantoral, 2004; Castañeda, 2004) explicar cómo se modifican las prácticas y cómo se construyen nuevos escenarios para el estudio de las matemáticas. Este trabajo de investigación propone describir las prácticas asociadas al estudio de la derivada en un ambiente tecnológico en las que se ponen en juego diversas situaciones interrelacionadas utilizando objetos java. Estos objetos, cuyo escenario natural de aplicación es en la red de Internet, se caracterizan por la disponibilidad de manipulación.
Resumo:
El concepto de límite es difícil de enseñar y aprender, dado que trae consigo diversos obstáculos que deben ser superados en su totalidad para aprender dicho concepto; por lo tanto crear actividades que permitan su comprensión contribuirá significativamente a facilitar este proceso (enseñanza- aprendizaje). De esta manera se proponen cuatro actividades que parten de la construcción del fractal “árbol pitagórico”; dicho fractal aporta al tratamiento del obstáculo geométrico del concepto de límite. Este obstáculo surge a través de la evolución del concepto de límite y es precisamente de la historia de donde surgen las actividades que se aplican a estudiantes de grado undécimo en entornos virtuales y presenciales, mediadas por el trabajo colaborativo.
Resumo:
Se desarrolla un taller básico de estadística descriptiva y de probabilidad, con la utilización de mediadores físicos y virtuales, donde se presentan los elementos conceptuales y la aplicación a diversas situaciones cotidianas con algunos comentarios didácticos para orientar el proceso y generar un diálogo acerca de la importancia de la enseñanza de la probabilidad a nivel de básica primaria y secundaria.