18 resultados para Simulación cinemática
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En este trabajo se reportan los resultados obtenidos con 39 estudiantes del Instituto Santa María Goretti de Bucaramanga, institución que viene participando en el proyecto “Incorporación de Nuevas Tecnologías en el Currículo de Matemáticas de la Educación Básica y Media de Colombia” desde el año 2002, quienes dieron solución a un problema de una carrera de fórmula 1, donde Juan Pablo Montoya sale de pits con una aceleración de 4 m/seg2 y en ese mismo instante pasa Michael Schumacher con una velocidad constante de 252 Km/hora. Este problema fue simulado en Cabrí Geometry en una pista circular, para el estudio de las funciones lineal y cuadrática. El trabajo con la simulación permitió que las estudiantes identificaran con mayor precisión las variables y no variables y que a través de la toma de datos y análisis de ellos llegaran a obtener diferentes representaciones (numérica, grafica, tabular, algebraica) de las funciones lineal y cuadrática. Además de relacionar los conceptos aprendidos en el estudio del movimiento uniforme y uniformemente acelerado.
Resumo:
En este trabajo en proceso presentamos los resultados de la primera fase de nuestra investigación (análisis preliminar), que pretende reconocer a la práctica o la estrategia de la simulación que realizan los estudiantes al momento de resolver problemas de probabilidad y con ello las cuestiones en probabilidad será de gran sencillez teniendo a la herramienta de la simulación. En ello sostenemos que la práctica de la simulación enriquece al conocimiento matemático del ser humano y en particular a la probabilidad.
Resumo:
Este reporte es parte de una investigación en curso que estudia prácticas de simulación y las herramientas que se construyen para su ejercicio, esta se desarrolla en el marco de la socioepistemología. La simulación se entiende como prácticas recurrentes de diferentes comunidades con la intencionalidad de describir fenómenos a partir de sus modelos. En este trabajo solo abordamos la simulación de fenómenos considerando modelos lineales, para ello analizamos dos puesta en escena de un diseño de aprendizaje con estudiantes de nivel medio superior y de posgrado. Reportamos las herramientas, procesos y argumentos de los actores al simular.
Resumo:
La simulación computacional de problemas de probabilidad permite obtener sus soluciones a través de la frecuencia relativa del número de éxitos obtenidos en los n experimentos realizados. La ley de los grandes números respalda una buena aproximación de la probabilidad teórica de un evento a través de la repetición sucesiva de experimentos. A continuación se presentan una serie de problemas probabilísticos con una posible simulación realizada en los paquetes Fathom y Excel. La solución teórica de estos problemas requiere conocimientos básicos de probabilidad, por lo que las simulaciones realizadas buscan dar una propuesta de solución a estos problemas sin tener que acudir al formalismo matemático.
Resumo:
El presente trabajo tiene como objetivo que el lector obtenga una mejor comprensión del concepto de probabilidad y una interpretación correcta a la Ley de los Grandes Números. Las actividades planteadas adoptan el enfoque frecuencial de la definición de probabilidad, en donde a través de la simulación de algunos experimentos aleatorios utilizando Excel y desde una perspectiva Brousseauneana, se aproximan las probabilidades teóricas de algunos eventos.
Resumo:
La hoja de cálculo constituye un potente entorno para la experimentación en clase de estadística, comparable al laboratorio en la de ciencias experimentales. Entre sus múltiples aplicaciones se encuentra la de proporcionar un medio para la comprobación experimental de resultados teóricos. Para ilustrarlo, proponemos un modelo para verificar el teorema de Stein relativo a la estimación óptima de un conjunto de k > 2 medias. El carácter paradójico de este resultado lo convierte en un ejemplo ideal para este tipo de simulaciones.
Resumo:
A partir de la hipótesis de que una relación simbiótica entre las nociones de predicción y de simulación sea el eje del cálculo integral escolar, reportamos, aquí, algunos resultados de nuestro trabajo con estudiantes universitarios con los que hemos explorado aspecto de la simulación en las ecuaciones diferenciales lineales de primer orden. Favoreciendo la idea de simulación, se trabajó con la ecuación diferencial, dónde se variaron uno a uno los parámetros a, b y c. Encontramos un argumento gráfico que atiende las tendencias de las gráficas, ya sea en una suma de funciones, en la variación de los parámetros o en la forma de la gráfica de la solución de las ecuaciones diferenciales, favorecidos por los dispositivos tecnológicos permiten concebir a una función globalmente.
Resumo:
Actualmente las experiencias de modelación y el uso de tecnologías digitales en las aulas de clase son temas de gran interés para los profesores, formadores e investigadores en Educación Matemática. Por un lado, la modelación matemática favorece el uso de la Matemática como un instrumento para el abordaje de situaciones y fenómenos del mundo. Por otro lado, integrar las tecnologías digitales (como simuladores, videojuegos, entre otros)en la enseñanza de las Matemáticas y las Ciencias, en particular de la Física, permite vincular los hechos e ideas asociadas a un fenómeno físico, entre sí y con marcos teóricos que los sustentan. Al fusionar la modelación y las tecnologías digitales a través de la simulación se obtienen entornos de aprendizaje que promueven el desarrollo de conocimiento y habilidades de pensamiento científico en los estudiantes. Sin embargo, la mayoría de las investigaciones en esta área están orientadas hacia una mayor comprensión de las formas de usar eficientemente estos simuladores en las clases de ciencias, dejando de lado al proceso de su elaboración como una verdadera oportunidad para aprender Matemática y otros saberes asociados. En este sentido, el presente trabajo describe la secuencia de pasos de construcción creada para elaborar un simulador del movimiento en caída libre con GeoGebra. Esto con el doble propósito de (i) develar la Matemática implícita en los procesos de construcción de simuladores con GeoGebra y (ii) motivar la creación de otros simuladores con un propósito similar al mencionado en este trabajo.
Resumo:
En este reporte de investigación se presentan los avances de un proyecto acerca de las formas de construcción de conocimiento matemático que proporcionan experiencias de aprendizaje basadas en actividades de simulación y modelación en el estudio de situaciones de la variación y de la acumulación de cantidades que varían continuamente. En la investigación se toma como referencia la aproximación socioepistemológica. Bajo ese paradigma se concibe el cálculo como el cuerpo de conocimientos que permite el estudio de los fenómenos de variación y la modelación se concibe como una forma de construir conocimiento matemático que pertenece a las prácticas sociales. Se presentan aquí las primeras exploraciones en un contexto del estudio del movimiento. La forma de trabajar las representaciones asociadas al movimiento es con el uso de sensores y de transductores que transforman la información en conjuntos de datos que diversos programas manipulan mostrando representaciones gráficas en calculadoras.
Resumo:
La propuesta que hoy presentamos, es el resultado de varios años de implementación del proyecto liderado por el Ministerio de Educación, las Universidades y algunas Secretarías de Educación, conocido como Incorporación de Nuevas Tecnologías al Currículo de las Matemáticas de la Educación Básica y Media de Colombia con la mediación de los Software Interactivos como Cabri y los accesorios externos como sensores para toma de datos. Al definir el objeto de las matemáticas, encontramos que su aprendizaje no sólo se basa en formar el espíritu lógico, sino también proporcionar herramientas para la solución de problemas reales. Por lo tanto, se debe combinar el rigor lógico con la funcionalidad, puesto que además de la lógica formal las matemáticas proporcionan también un poderoso conjunto de herramientas que posibilitan describir, explicar, predecir y modelar situaciones no sólo del mundo científico, sino también de la vida cotidiana (significación). Es por esto, que juega un papel importante implementar en su didáctica, el referirla al mundo de la naturaleza, de las otras ciencias (interdisciplinariedad), y de la cotidianidad del hombre. Es fácil ver los nexos que tienen las Ciencias Naturales con el mundo extraescolar, lo que permite construir el conocimiento a partir de proyectos en donde se manipule en forma directa el mundo real. Las temáticas que se trabajan en esta propuesta además de permitir lo anterior, proporcionan el estudio formal de las matemáticas y el desarrollo de sus diferentes pensamientos. Los ejes temáticos trabajados son: Cinemática, Luz, Electricidad, Calor y Energía y propiedades químicas de las sustancias, entre otras.
Resumo:
A través del taller se muestra la posibilidad del uso del programa computacional Cabri para el desarrollo del pensamiento variacional especialmente; mostrando el comportamiento general de cada una de las funciones trigonométricas en el plano cartesiano, graficándolas en el mismo plano haciendo una simulación de eje y sobre el mismo sistema coordenado.
Resumo:
Con este trabajo se da cuenta de los aprendizajes que logran los estudiantes del nivel bachillerato al trabajar con un problema de una situación real de movimiento empleando tecnología como son los sensores (dispositivos transductores) y calculadora graficadora. La aproximación socioepistemológica sirvió de sustento para realizar un análisis previo, el cual nos permitió identificar tres usos de las gráficas: construcción de gráficas utilizando la regla de correspondencia entre dos variables, gráficas por operaciones gráficas y la graficación por medio de la simulación de un fenómeno físico empleando tecnología. El trabajo con estudiantes nos permitió caracterizar el uso de las gráficas a partir de las actividades de modelación con las características del Comportamiento Tendencial de las Funciones.
Resumo:
En los últimos años hemos sido partícipes de un explosivo desarrollo tecnológico; esto ha puesto en duda muchas de las prácticas docentes en los cursos de matemáticas. El advenimiento de la computadora con programas de manipulación simbólica, de graficación y simulación, hacen que muchas de las tareas usuales de un curso de cálculo, como derivar e integrar simbólicamente, se puedan resolver mediante la aplicación de estos paquetes. Esto cuestiona gravemente el rol del profesor y lleva ineludiblemente a una revisión curricular en donde se deben examinar los objetivos de los cursos de cálculo y determinar con precisión el contrato didáctico entre los participantes que son: el profesor, la tecnología y el estudiante. Cada propuesta presenta ventajas y desventajas en su uso, evidenciarlo es el objetivo del presente trabajo.
Resumo:
Este trabajo tiene como objetivo principal mostrar, a los estudiantes de los niveles superiores, los procedimientos principales de construcción de modelos matemáticos para resolver situaciones problemáticas que se manifiestan en la realidad cotidiana en el desarrollo de una determinada actividad profesional y como objetivo específico establecer alternativas de tarifas sociales con destino a núcleos de clientes perfectamente identificados en cuanto a su calidad, por su escasa capacidad de pago, y aproximadamente delimitados en cuanto a la cantidad. Bajo la denominación de tarifa social de cualquier servicio público se entiende a aquellas tarifas que, siguiendo distintos mecanismos, se subsidian implícita o explícitamente, parcial o totalmente, para beneficiar a ciertos sectores de usuarios con un determinado fin. Para tener una herramienta de análisis que permita simular distintas escenarios con el fin de fijar los subsidios a la tarifa de los clientes residenciales y tomar decisiones al respecto, se elaboró un modelo matemático que describe esta situación. Después del análisis de validación del modelo, mediante el trazado de superficies y curvas de nivel con la ayuda del medio lógico Derive, se realizó una simulación numérica a fin de acotar los resultados posibles que satisfagan los requerimientos impuestos por la situación problemática a resolver. Finalmente se concluye el trabajo con la especificación de la tarifa social buscada.
Resumo:
El currículo de estadística en el sistema escolar sugiere desde la infancia un cambio metodológico de enseñanza hacia el desarrollo de los aspectos intuitivos de lo estocástico en situaciones de incertidumbre. El Taller tiene dos propósitos, presentar actividades de experimentos aleatorios con dispositivos manipulativos, algebraico y computacional para familiarizarse con la noción de distribución de probabilidad binomial. También, ilustrar que su enseñanza en la educación secundaria por medio de variadas representaciones proporciona una mayor potencia en el cálculo de probabilidades y la introducción de las ideas de parámetro, estadístico, simulación, variable aleatoria y aproximación.