5 resultados para Siglos XVII-XIX
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En este artículo se analiza la posición que ocupa Laplace en el desarrollo de la teoría clásica de la probabilidad. Se hace en el marco de los 200 años de la publicación del "Essai philosophique sur les probabilités". El artículo se divide en las siguientes secciones: en la primera se introducen algunas de las características de las matemáticas del periodo. En la segunda, se presentan algunos de los desarrollos fundamentales en la teoría de la probabilidad alcanzados durante los siglos XVII y XVIII. Finalmente, presentamos algunas de las principales contribuciones de Laplace. En general, se considera que con Laplace la teoría clásica de la probabilidad adquiere su forma definitiva.
Resumo:
A finales del siglo XVIII, en Europa el conocimiento científico se había desarrollado extraordinariamente. Surgen los nombres de Lavoisier, Ritcher, Coulomb y Celsius entre otros muchos. Se enuncian leyes en química y física; junto a ellas también florece la matemática de la mano de Euler, Lagrange, D«Alambert, Monge, por citar sólo unos cuantos. Mientras tanto, el atraso de las matemáticas españolas se debía, entre otras causas, al pobre estado en que se encontraban las universidades: aún de tipo medieval y de carácter eclesiástico. Esto lo evidencia Fray Benito Jerónimo Feijoo en la carta titulada Causas del atraso que se padece en España en orden a las ciencias naturales, y el Marqués de la Ensenada quien, en 1748, se lo expresa al rey Fernando VI. Las deficiencias de las universidades tenían que ver con la enseñanza memorística, textos anticuados e interés primordial por disciplinas como derecho, teología y filosofía en detrimento de las matemáticas y las ciencias.
Resumo:
Algunos problemas nos atraen independientemente de la dificultad de su resolución. El que vamos a presentar lleva como título ¿CÓMO SE LLAMA EL PROFE? Y lo hemos encontrado en el libro de Agustín Fonseca: “El rompecocos” (Ed. Temas de Hoy).
Resumo:
El presente trabajo es una investigación en curso. Una fuente de dificultades didácticas es la interpretación geométrica de la derivada, en donde la recta tangente no se considera como objeto de estudio. Nuestro planteamiento es que al construir la recta tangente desde una perspectiva variacional puede servir como una introducción a la derivada desde un punto de vista gráfico, lo cual implica también un rediseño del Discurso Matemático Escolar. Utilizamos la teoría de la Socioepistemología, en la cual se plantea que el uso de herramientas matemáticas para resolver actividades organizadas intencionalmente con la intención de resolver un problema, son una práctica, normadas por una práctica social. El escenario histórico nos ha servido para reconocer la práctica de la tangente variacional. Actualmente hemos implementado un método para obtener nuestros datos el cual nos servirá para que un futuro próximo podamos analizarlos y obtener conclusiones.
Resumo:
Todo tiene un final, incluso una etapa de progreso y buen haber como este último periodo de nuestra querida suma. Emilio y Julio cumplido de sobra y pasan el testigo. Sirvan estas líneas introductoriass a nuestra también última entrega isoperimétrica para mostrarle nuestro reconocimiento. Sobresaliente, cum laude por unanimidad, amigos.