5 resultados para Segmento Pet
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En el marco de un acuerdo interinstitucional, se investiga e indaga acerca de la formación matemática de estudiantes de bachillerato tecnológico. Se aplicaron dos cuestionarios a 39 estudiantes de tercer semestre, uno sobre los fundamentos del tema de lugar geométrico de la recta en el plano y otro sobre los conocimientos requeridos para acceder a su enseñanza. Además, se entrevistó a dos estudiantes individualmente acerca de sus respuestas en el primer cuestionario. Los datos obtenidos revelaron deficiencias en la identificación y cálculo de una pendiente, en la expresión verbal, gráfica o simbólica de lugares geométricos simples, confusión entre segmento de recta y recta, desconocimiento de procedimientos geométricos elementales, de operatividad algebraica y falta de identificación de términos de expresiones simbólicas. La enseñanza de la recta en el curso de Geometría Analítica tuvo que enfrentar estas condiciones desde el principio.
Resumo:
Se presenta un modelo geométrico para la construcción de un segmento llamado Escintor, que divide a un triángulo en dos poligonales de igual perímetro, además se demuestra la existencia de otras rectas notables en un triángulo denominadas Mescintriz y Vescintriz con propiedades similares a las otras rectas ya conocidas; así mismo se muestra como el Mescincentro y el Vescincentro, puntos donde se intersecan las Mescintrices y las Vescintrices respectivamente, están alineados con el Baricentro y el Incentro en una recta que guarda mucha semejanza con la Recta de Euler.
Resumo:
Se reporta una investigación realizada con alumnos de 15- 16 años sobre los algoritmos de construcción de un Arco Capaz de segmento y ángulo dado. Se propuso a los alumnos un problema cuya solución óptima es un Arco Capaz de segmento y ángulo dado, y se les requirió luego que construyeran dicho arco utilizando regla, compás y semicírculo. Los alumnos idearon diversas construcciones para el Arco Capaz pero en ningún momento aparece la construcción tradicional de Euclides. Básicamente, la idea que usan los estudiantes para construir el Arco Capaz, es la de obtener un triángulo cualquiera tal que uno de sus ángulos sea el ángulo dado para luego determinar su circuncentro y trazar el Arco.
Resumo:
En este artículo se presentan algunos resultados elementales que relacionan las cónicas regulares y las cónicas con centro con trapecio. La clave esta relación consiste en que si dibujamos segmento paralelo que pase por el punto en que se corta las dos diagonales del trapecio, la longitud de su segmento es la media armónica de las longitudes de las bases. También se mostraron otros resultados que están relacionados con la interpretación de la media vía el trapecio y su relación conciertos propiedades de las cónicas regulares a través de sus cuerdas focales.
Resumo:
En este trabajo nos proponemos abordar un problema clásico: la división de un segmento en media y extrema razón. Nuestro interés se centra en ilustrar, con un ejemplo sencillo, los sucesivos pasos a la hora de interpretar una magnitud: primero como una longitud, un área o un volumen; después como un segmento; y, por último, como un número. Evolución que refleja el proceso de creación de la geometría analítica. Por otro lado, estos tres periodos coinciden con las tres fases por las que pasa una disciplina matemática: ingenua, formal (en la que se perfecciona el cálculo simbólico) y una fase crítica (en la que se revisan los fundamentos).