3 resultados para Secuencias Repetitivas Esparcidas
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
El estudio tiene como principal propósito analizar la incidencia del desarrollo de un curso de geometría que utiliza como herramienta instruccional el software educativo CABRI GEOMETRE II, en la evolución del razonamiento geométrico de alumnos de educación superior. Tomando como base los niveles y fases del modelo de razonamiento geométrico de Van Hiele, se realizó una categorización referente al grado de adquisición de un determinado nivel, en relación a la naturaleza de la tarea. Los resultados obtenidos en el análisis corroboraron las hipótesis de que el factor instruccional es necesario para el progreso entre etapas de aprendizaje y que existe lentitud en la maduración del razonamiento geométrico de los alumnos, a pesar de vivir experiencias de enseñanza estructuradas e intencionales. Además, el avance promedio es de una etapa y no se detectaron diferencias significativas entre los niveles en cuanto a los avances promedio en las etapas de aprendizaje. Se concluye que el modelo de análisis diseñado en el estudio parece pertinente, porque establece secuencias, de etapas de aprendizaje adaptadas a la naturaleza de los ítems.
Resumo:
El analizar las relaciones epistemológicas entre prácticas sociales y el conocimiento matemático es uno de los objetivos de una aproximación teórica denominada socioepistemología. Esto permite informar acerca de cómo se construye dicho conocimiento desde una perspectiva de la actividad que desarrollan los humanos interactivamente y tomar en cuenta no sólo la producción matemática final, sino las herramientas y los argumentos que entran en juego. Una vez que se reconoce este origen social, podemos ver qué ocurre en sistemas didácticos por medio del diseño de secuencias cuyo origen es precisamente una socioepistemología del saber. La situación que se genera tiene pues la intención, de hacer patente la relación entre práctica y saber, en particular, entre la predicción y la periodicidad.
Resumo:
Ante el interés creciente por álgebra lineal y las dificultades que aún continúan presentando los estudiantes en el aprendizaje de los objetos abstractos de esta disciplina, el presente trabajo pretende apoyarse en el marco de la geometría sintética para introducir los espacios analíticos R1, R2 y R3 y poder sólo después realizar las generalizaciones pertinentes a Rn. Un análisis histórico permite comprender ciertas dificultades de los estudiantes y a la vez proporciona elementos para construir secuencias de actividades con miras a introducir los conceptos de álgebra lineal de tal manera que los estudiantes perciban la necesidad del formalismo, presentando todos los sentidos posibles de los conceptos en sus diferentes modos de representación, en particular conectarlo con sus conocimientos anteriores sobre los sistemas de ecuaciones lineales y la geometría. Esta investigación se desarrollará con estudiantes de primer año universitario, cuando llevan por primera vez álgebra lineal y el concepto de espacio vectorial es enseñado formalmente como una definición muy amplia que involucra varios conceptos previos.