4 resultados para Salto (Atletismo)

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este documento presenta un juego o puzzle de intercambio de posiciones es aquel en el que, sobre un tablero, se encuentran posicionados dos grupos de fichas y se presenta como objetivo cambiar entre sí dichas posiciones. El cambio se ha de hacer con ciertas reglas que atañen al modo de moverse las fichas, con el fin de utilizar como recurso didáctico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el anterior artículo prometimos una segunda parte dedicada al tratamiento del juego “Salto de la Rana” en la clase. Nos toca, pues, hablar de estrategias, notaciones, desarrollos, soluciones y ampliaciones o variantes del mismo. Empezaremos por indicar algunas referencias bibliográficas más, todas ellas interesantes, y de las que hemos sacado la mayor parte de la información que hemos reunido en este artículo. Recomendamos que sean leídos, al menos aquellos más asequibles y de manera particular los de Fayos y Gracia, Corbalán, Shell Center, Cobo y Ferrero.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el artículo con el que introducíamos esta sección (SUMA N° 47), ilustrábamos con los cuadros Las meninas de Velázquez (1656) y Las meninas de Picasso (1957), el enorme salto conceptual que desde las matemáticas supone el pasar de concebir y describir el espacio como un contenedor único en el que habitan las cosas, a concebir y describir el espacio como una red de relaciones que se establece entre cosas concretas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Demos un gran salto en el tiempo. En números anteriores narramos los avatares del problema isoperimétrico en Grecia y en los países islámicos medievales, respectivamente. Retomemos el enfoque dado por Pappus con el que llegó a la conclusión de que, para un área dada, el perímetro del hexágono regular es menor que el del cuadrado o el del triángulo equilátero, por lo que si el problema se plantea sobre una teselación regular del plano, un trozo finito del teselado regular hecho con hexágonos regulares es el que requiere menor perímetro. Bueno, aún no podemos detenernos porque hemos de hacer la demostración de la proposición de Pappus en 3D. El conocido MacLaurin (1698-1746), profesor de Aberdeen y Edimburgo, utilizó el método que a continuación presentamos. Lo hizo para poner de manifiesto la capacidad de la Geometría clásica como fuente de investigación en cualquier momento (conviene recordar que MacLaurin estaba centrado en analizar las posibilidades de los métodos infinitesimales que en su época emergían, lo que demostró sobradamente con su Treatise of Fluxions).