19 resultados para Rafael de Malaguilla

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

El principal objetivo de nuestro trabajo es conseguir una alternativa multimedia al tratamiento, en clase, de la resolución de problemas; una presentación que atraiga la atención del alumnado en clase de matemáticas facilitando así la tarea al profesor, dotándolo de una herramienta adicional para trabajar empíricamente. Este trabajo multimedia de resolución de problemas supone un material novedoso para el aula, que vendrá a formar parte de las herramientas de que dispondrá el profesorado de matemáticas para despertar entre su alumnado el interés y el ánimo por disfrutar con las matemáticas; éste ha sido nuestro objetivo primordial a la hora de idear y más tarde crear este trabajo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo enmarca y describe algunas interacciones entre alumnos/ investigador/docente generadas durante el desarrollo de una investigación en didáctica de la matemática. Toda investigación supone la toma de decisiones que atañen a diversos aspectos relacionados con el problema, los objetivos de la investigación y los resultados que se obtienen durante su desarrollo. Se pondrá de manifiesto que estas decisiones, que definen en buena medida la coherencia de la investigación, deben tomarse en todas las etapas de la investigación, desde su inicio hasta el momento de escribir la memoria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La naturaleza del pensamiento de los profesores es una área de considerable interés y la atención hacia la relevancia de la geometría como un importante componente formativo es un hecho en los planteamientos interesados en la formación inicial y continuada del profesorado. En el ámbito de la investigación cualitativa, presentaremos las contribuciones de un entorno virtual para el desarrollo crítico del contenido del conocimiento profesional del profesor de matemática. Específicamente, analizar un proceso teleinteractivo docente a partir de situaciones de enseñanza-aprendizaje en geometría (para alumnos con 11-14 años). La importancia del proceso teleinteractivo para el desarrollo de habilidades metacognitivas en los profesores es un hecho destacable en las conclusiones de la investigación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se presenta una experiencia de investigación-acción colaborativa en fase de desarrollo que parte de la preocupación del profesorado de un colegio de Educación Primaria por mejorar su metodología en lo relativo al desarrollo del pensamiento numérico. El centro, que está ubicado en un barrio con alto riesgo de exclusión social, inició su transformación en Comunidad de Aprendizaje hace tres años. A grandes rasgos, la apuesta metodológica se basa en el aprendizaje significativo del Sistema de Numeración Decimal de la mano de unos materiales manipulativos concretos y la utilización de los denominados algoritmos Abiertos Basados en Números (ABN) para el cálculo. El proyecto, en el que participan los maestros y maestras del centro, profesorado de Didáctica de las Matemáticas, asesores de formación y alumnado universitario, pone en acción iniciativas de formación del profesorado, innovación en el aula e investigación educativa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se presenta un modelo geométrico para la construcción de un segmento llamado Escintor, que divide a un triángulo en dos poligonales de igual perímetro, además se demuestra la existencia de otras rectas notables en un triángulo denominadas Mescintriz y Vescintriz con propiedades similares a las otras rectas ya conocidas; así mismo se muestra como el Mescincentro y el Vescincentro, puntos donde se intersecan las Mescintrices y las Vescintrices respectivamente, están alineados con el Baricentro y el Incentro en una recta que guarda mucha semejanza con la Recta de Euler.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se hace un estudio algebraico y geométrico de los campanoides, nuevos objetos basados en los polígonos regulares, se definen, clasifican y muestra el proceso de su construcción. En este trabajo analizo específicamente el Campanoide Triangular indicando sus características, modelo algebraico que lo define y la ecuación para calcular su ´área en términos de la base, al final se muestran unos mosaicos construidos con estos campanoides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los problemas combinatorios tienen profundas implicaciones tanto en el desarrollo de algunas ramas de la Matemática como en otras disciplinas (Batanero, Godino y Navarro-Pelayo, 1994). Una mención especial merece el papel de la Combinatoria en la Probabilidad, ya que una escasa capacidad del razonamiento combinatorio reduce la aplicación del concepto de Probabilidad a casos muy sencillos o de fácil enumeración (Piaget e Inhelder, 1951). Debido a la importancia del tema, decidimos concentrarnos en su tratamiento en algunos libros de texto de Matemáticas de Educación Secundaria. Nos basamos en el desarrollo de la teoría de los significados sistémicos, desarrollada por Godino y colaboradores, para considerar el libro de texto como una institución y, en ese contexto, el problema de investigación abordado es la caracterización del significado institucional del objeto matemático “Combinatoria” en los libros de texto citados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Con el propósito de superar algunas dificultades de los profesores en la integración de tecnologías en la enseñanza de las matemáticas, se presenta una secuencia de análisis de las trasformaciones geométricas de la función exponencial natural, definida por f(x)=e^ax, que se apoya en el uso del GeoGebra. Tal secuencia permite caracterizar familias de curvas asociadas a la expresión anterior, a partir del análisis de las transformaciones geométricas “deformación” y “reflexión” experimentadas por estas curvas tras la variación del parámetro a. En el diseño de la secuencia se tomó en cuenta aspectos de teóricos, instrumentales y didácticos, que se consideran pertinentes para realizar el análisis. El uso de esta secuencia favorece el desarrollo de las capacidades para la integración eficiente de las tecnologías en la enseñanza de la Matemática.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se presentan y analizan los problemas propuestos en el concurso matemático El inGENIO no tiene edad, que tuvo lugar en nuestro colegio y en el que se enfrentaron alumnos de todas las edades, desde infantil hasta bachillerato. Cada problema iba relacionado con un paso para construir una estrella de papel con interesantes propiedades matemáticas. El equipo que resolvía todos sus ejercicios aprendía a crear estrellas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Todo tiene un final, incluso una etapa de progreso y buen haber como este último periodo de nuestra querida suma. Emilio y Julio cumplido de sobra y pasan el testigo. Sirvan estas líneas introductoriass a nuestra también última entrega isoperimétrica para mostrarle nuestro reconocimiento. Sobresaliente, cum laude por unanimidad, amigos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hemos dejado para el final aquella resolución por la que comienza la mayoría del profesorado de matemáticas: la basada en el uso del cálculo diferencial. Siempre que hemos propuesto el problema que planteábamos en la primera entrega en algún curso o seminario, la forma de abordarlo ha sido echando mano de las derivadas para la búsqueda de extremos de determinada función área. Como se habla de enmarcar un cuadro de 3 m de perímetro, siempre han comenzado pensando en formas rectangulares, por lo que el problema que se planteaban solía ser el siguiente: entre todos los rectángulos de igual perímetro P, el cuadrado de lado P/4 es el que encierra la mayor área.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A lo largo de la historia han existido una serie de problemas que han intrigado, a la vez, frustrado los matemáticos de todos los tiempos. Algunos de ellos siguen sin resolverse y otros como problemas isoperimétricos del que venimos preocupándonos desde el número 33 de suma tan sencillo de enunciar y sin embargo tan difícil de demostrar, se resolvieron tras siglos de esfuerzo. Cuando decimos anterior lo hacemos teniendo muy en cuenta lo que tal afirmación significa. Es decir, resolver un problema no consiste sólo en dar una solución sino demostrar que tal solución existe. De esta cuestión nos ocupamos ahora.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este artículo presentamos los resultados de un análisis de las preguntas en las que intervienen gráficos y tablas de la sección de estadística y probabilidad en los facsímiles de la Prueba de Selección Universitaria (PSU) en los procesos de admisión 2005 al 2015. La metodología seguida en esta investigación es de tipo cualitativa, descriptiva y mediante análisis de contenido. Dentro de los resultados se destacan un predominio de tablas estadísticas, gráficos de barras, nivel de lectura “leer dentro de los datos”, nivel semiótico “representación de una distribución de datos” y de las actividades que se hacen referencia al cálculo relacionados de la frecuencia, variable y sus valores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

¿cuál es el camino más corto entre dos puntos del plano? ¿Y del espacio? ¿Y sobre una superficie cualquiera? ¿Qué forma tiene el tobogán más rápido? ¿Cuál es la curva plana que encierra mayor área entre todas las que tienen una misma longitud?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Demos un gran salto en el tiempo. En números anteriores narramos los avatares del problema isoperimétrico en Grecia y en los países islámicos medievales, respectivamente. Retomemos el enfoque dado por Pappus con el que llegó a la conclusión de que, para un área dada, el perímetro del hexágono regular es menor que el del cuadrado o el del triángulo equilátero, por lo que si el problema se plantea sobre una teselación regular del plano, un trozo finito del teselado regular hecho con hexágonos regulares es el que requiere menor perímetro. Bueno, aún no podemos detenernos porque hemos de hacer la demostración de la proposición de Pappus en 3D. El conocido MacLaurin (1698-1746), profesor de Aberdeen y Edimburgo, utilizó el método que a continuación presentamos. Lo hizo para poner de manifiesto la capacidad de la Geometría clásica como fuente de investigación en cualquier momento (conviene recordar que MacLaurin estaba centrado en analizar las posibilidades de los métodos infinitesimales que en su época emergían, lo que demostró sobradamente con su Treatise of Fluxions).