10 resultados para Procesamiento en lenguaje natural
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En esta comunicación presentamos parte de los resultados obtenidos en las investigaciones realizadas dentro de Planes Nacionales de Investigación Educativa del C.I.D.E. durante los cursos 1987-88 y 1988-89, que trataban de averiguar las dificultades del aprendizaje del álgebra en secundaria. El objetivo inicial de este trabajo era estudiar las dificultades planteadas en la resolución de problemas de enunciado verbal en los que se utiliza una ecuación de primer grado o un sistema lineal de dos ecuaciones con dos incógnitas, ya que considerabamos, como la mayoría de los profesores lo hace, que la mayor dificultad presentada en álgebra estaba en la resolución de estos problemas.
Resumo:
En esta comunicación presentamos el sistema tutorial inteligente, al que hemos llamado AGENTGEOM, y analizamos cómo interactúa con un alumno en la resolución de un problema que compara áreas de superficies planas. En esta interacción, el alumno llega a apropiarse de habilidades estratégicas y argumentativas en la resolución de problemas. Observaremos que estas apropiaciones son consecuencia de las formas de comunicación alumno-AGENTGEOM, en las que se combinan construcciones gráficas y sentencias escritas que siguen las normas del lenguaje matemático, y la emisión de mensajes escritos en lenguaje natural.
Resumo:
El presente trabajo forma parte de la primera etapa del Proyecto de Investigación “Análisis del Lenguaje Matemático y su influencia en los procesos de Validación en estudiantes universitarios de Ingeniería” realizado en forma conjunta por la Facultad de Agronomía UNCPBA (Azul-Argentina), y la Facultad de Química e Ingeniería UCA (Rosario-Argentina). Aquí se presentan y analizan los resultados de una encuesta piloto en pos de caracterizar las dificultades y obstáculos para la comprensión y traducción entre los registros de expresiones verbales o escritas (lenguaje proposicional) y su representación en lenguaje algebraico (uso de símbolos matemáticos) en los estudiantes que ingresan a la Universidad.
Resumo:
En esta comunicación se presenta la primera parte de una investigación cuyo objetivo fue analizar si un experimento de enseñanza diseñado ad hoc ayudó a la construcción de caracterizaciones equivalentes del concepto de dependencia lineal, en lenguaje geométrico y analítico. En primer lugar se diseñó un experimento de enseñanza en un contexto de geometría dinámica utilizando simultáneamente representaciones geométricas y analíticas del concepto y se describió una ‘trayectoria hipotética de aprendizaje’ en términos del mecanismo de ‘reflexión sobre la relación actividad-efecto’. En segundo lugar se describieron las trayectorias de aprendizaje de estudiantes de 2o de bachillerato (17-18 años) identificando las ‘acciones de generalización’ y las ‘generalizaciones de la reflexión’.
Resumo:
En los últimos años y particularmente desde la aparición de los lineamientos curriculares (1998) el estudio de la educación estadística ha recobrado gran importancia para la formación de nuestros estudiantes, tanto de la educación básica como de la media y la superior. Este interés por formar una cultura estadística en los alumnos, se sustenta, desde nuestro punto de vista en tres cuestiones,igualmente importantes: 1. La necesidad social de formar ciudadanos capaces de comprender información codificada en lenguaje matemático. 2. El uso extendido de las nociones de probabilidad, azar, etc, presentes tanto en el conocimiento científico como en el conocimiento humano en general. 3. La responsabilidad de la escuela en general de ser un agente de formación para los nuevos ciudadanos. Desde estas posturas, encontramos importante señalar que la educación estadística tiene pues que abordar por lo menos los siguientes campos de formación: el análisis de datos, el tratamiento del azar y la probabilidad. En lo relativo al análisis de datos nos proponemos construir una propuesta que se diferencie de lo que hasta ahora hemos emprendido en los currículos escolares, tal es, el estudio de la estadística descriptiva en cuyo caso el énfasis en la enseñanza se centra en la ejercitación de los cálculos rutinarios resueltos con lápiz y papel, como son: gráficos, tablas, frecuencias, medidas y por último verificación de modelos. Alternativa a esta perspectiva nos proponemos utilizar el análisis exploratorio de datos enfatizando en la conceptualización sobre aspectos tales como la lectura crítica de datos, el uso de diferentes representaciones, el establecimiento de las similitudes (regularidades) y las variaciones, es decir, establecer un procedimiento de análisis que use los datos como el contexto de significado
Resumo:
En este trabajo se estudia la influencia y el papel de un aspecto del contexto exterior producido por elecciones de tipo lingüístico. Cuando el lenguaje escogido es de tipo coloquial, las primeras preguntas son informales, sobre aspectos extraescolares, y la discusión numérica atañe a N, hablamos de contexto natural. Este contexto parece inducir, en el sujeto sometido a la prueba, la convicción implícita de que debería contestar según modelos intuitivos, que dependen de la competencia que adquirió en los primeros niveles de escolarización o de modelos ingenuos. También examinamos el problema de la conciencia de los alumnos en situaciones de dificultad.
Resumo:
Este artículo presenta los resultados de una investigación, realizada en la escuela media, sobre el uso de la lengua natural en contexto matemático, y sobre la producción de modelos externos en torno a las concepciones profundas de algunos conceptos elementales que poseen los alumnos. Con una técnica que invita a los alumnos a asumir un papel diferente del que usualmente juegan en la clase de matemáticas, se intentaba empujarlos a escribir acerca de asuntos matemáticos elementales en un lenguaje coloquial, sin los aparatos formales que con frecuencia exhiben. No obstante haber acogido bien el juego del cambio de papel que les propusimos y haber respondido a las situaciones problemáticas usando lengua natural, la mayoría de los alumnos presentó la tendencia a completar su respuesta inicial con una respuesta formal, a menudo vacía, que tenía poco que ver con la tarea. En casos en que los alumnos no usaron aparatos formales para responder se identificaron modelos que resultan interesantes en el plano de verificación de los aprendizajes.
Resumo:
La idea que motiva el presente trabajo se refiere a entender cómo generalizan los estudiantes de bachillerato y qué tipo de pensamiento les permite hacerlo, para ello planteamos a un grupo de estudiantes del IEMS actividades donde se debe identificar un patrón que predice una secuencia geométrica, como un primer acercamiento a la idea de generalización. Este patrón debe ser descrito de forma algebraica (fórmula). En este artículo mostraremos dos tipos de formulaciones distintas construidas por los estudiantes para abordar el problema con distintos tipos de pensamiento que nos permiten mirar aspectos que podrían determinar el éxito o fracaso del desarrollo cognitivo puesto en marcha por los estudiantes.
Resumo:
El presente trabajo, realizado como parte de una investigación desde la línea de la construcción social del conocimiento con enfoque socioepistemológico, se centra en analizar a partir de un estudio de caso algunas de las características del lenguaje utilizado en el discurso matemático escolar. Se describen aspectos del lenguaje empleado por los estudiantes y docentes en el aula de matemática, mostrando la manera en la que la utilización de un lenguaje formal es aceptada como parte del contrato didáctico, a pesar de que se torna en obstáculo en muchas oportunidades.
Resumo:
La periodicidad como propiedad es identificada de manera natural por los individuos y resulta habitual el uso de los significados creados de forma compartida y que éstos se trasladen en contextos diferentes en donde son aplicados. Los resultados obtenidos en investigaciones como Buendía (2004, 2005a) y Alcaraz (2005) aportan no sólo elementos de corte cognitivo, sino herramientas que fungen como argumentos válidos en el reconocimiento de la naturaleza periódica. Lo periódico puede conformar todo un lenguaje, abarcando los ámbitos culturales, históricos e institucionales y procurándole un carácter útil al conocimiento matemático. La unidad de análisis es el elemento que tiende un puente entre un tratamiento empírico de la periodicidad y uno científico (Montiel, 2005), lo cual favorece una construcción significativa del conocimiento matemático. Nuestro marco teórico es la aproximación socioepistemológica la cual centra su atención en el examen de las prácticas sociales, entendidas como las acciones o actividades realizadas intencionalmente con un objetivo de transformación y con ayuda de herramientas que favorecen la construcción del conocimiento matemático, incluso antes que estudiar a los conocimientos mismos.