14 resultados para Paleolític superior -- Catalunya -- Sant Aniol de Finestres
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Las Instituciones de Educación Superior,en México, reportan bajos índices de Eficiencia Terminal, hecho relacionado con la reprobación, como es el caso de la Facultad de Matemáticas de la Universidad Autónoma de Yucatán, donde se presentan altos porcentajes de reprobación en la asignatura de Álgebra. Desarrollamos un estudio cualitativo empleando la etnografía, para caracterizar el tratamiento de los contenidos, otorgado por el profesor, y el nivel de asimilación de estos, por parte de los estudiantes. Identificamos las principales representaciones semióticas empleadas por el profesor, donde concluimos que el tratamiento otorgado a los contenidos es preferentemente algebraico y conjuntista. Además, la práctica de evaluación limita a los estudiantes a reproducir los conceptos enseñados.
Resumo:
A atividade que descrevemos teve como objetivo possibilitar aos alunos e professores supervisores bolsistas do Programa de Bolsas de Iniciação à Docência - PIBID do curso de Matemática da Universidade Federal do Triângulo Mineiro em Uberaba, Minas Gerais, a prática da estatística através de atividades de ensino utilizando projetos. Assim, através da aplicação de um questionário a 198 alunos do 3º ano do Ensino Médio de duas escolas estaduais pretendeu-se compreender os problemas que afetam a escolha profissional e a motivação ou não em continuar os estudos. Os resultados indicaram que a maioria dos alunos pretende dar continuidade aos estudos e o que dificultaria esse processo seria: condições financeiras e disponibilidade de tempo. Evidenciamos que as atividades de organização de pesquisa de campo, coleta, tabulação de dados, interpretação e análise dos dados despertou o espírito investigativo nos alunos.
Resumo:
La enseñanza de la Geometría es una ramificación de las Matemáticas que tiene una importancia fundamental en el razonamiento de los chicos y chicas de cualquiera nivel de la Educación Básica. El presente artículo tiene como objetivo presentar los resultados obtenidos de la evaluación diagnostica de Geometría Euclidiana Plana en los alumnos de Enseñanza Medio Superior. La metodología utilizada ha sido la Cuantitativa con Estudio Descriptivo. La muestra ha sido compuesta de 534 alumnos de cuatro escuelas particulares de Enseñanza Mediana de Belém – Pará – Brasil. Ha sido aplicado un cuestionario con cinco cuestiones básicas de Geometría. Los resultados muestran que los discentes están llegando en la enseñanza medio superior con poco o casi ningún conocimiento de Geometría.
Resumo:
Este reporte de investigación centra la atención al discurso del profesor en el aula de matemáticas en la Educación Media Superior, cuando se pretende enseñar conceptos y procesos matemáticos ligados a la noción de semejanza. Considerando que uno de los obstáculos en la evolución de este concepto ha sido la relación entre los aspectos figurativo y numérico. Nos preguntamos en qué medida el discurso del aula de matemáticas facilita las interpretaciones de las normas sociomatemáticas. Nuestro objetivo es presentar una aproximación a la noción del discurso en el aula para la identificación de normas sociomatemáticas que deberán regular las actuaciones y las formas de actuación que han de ser válidas para la construcción de consensos en el aula. El marco teórico en el que se sitúa la investigación es el enfoque interaccionista y análisis del discurso. Consideraremos un modelo de investigación cualitativa, basado en el método etnográfico, en donde los episodios que en este reporte se presentan forman parte del trabajo interpretativo en general.
Resumo:
Nossa pesquisa sobre as diferentes possibilidades de tratamento da noção de sistemas de equações lineares na transição entre o Ensino Médio e Superior. O referencial teórico escolhido é a noção de níveis de conhecimento esperados dos estudantes conforme definição de Robert (1997) apoiado das abordagens teóricas em termos de quadro de Douady (1984), de pontos de vista de Rogalski (1995) e complementado pela teoria antropológica do didático de Bosch e Chevallard (1999), que permite analisar as diferentes relações institucionais esperadas existentes assim como as relações pessoais desenvolvidas pelos estudantes em função das anteriores. Observamos que apesar da coerência entre as relações institucionais esperadas e existentes, os resultados obtidos pelos estudantes nas macroavaliações, tanto no Ensino Médio como no Ensino Superior, não correspondem às expectativas.
Resumo:
Os resultados apresentados referem-se à pesquisa sobre a transição Ensino Médio e Superior para as noções de Geometria Analítica. O referencial teórico da pesquisa é a Teoria Antropológica do Didático de Bosch e Chevallard (1999), a noção de quadro de Douady (1984), a noção de ponto de vista de Rogalski (1995, 2001) e a abordagem teórica em termos de níveis de conhecimento de Robert (1997). As análises das relações institucionais foram efetuadas por meio de documentos oficiais e livros didáticos e as relações pessoais por meio de macro avaliações. Os resultados encontrados mostram uma crescente preocupação institucional com a articulação dos ostensivos e não ostensivos associados às noções de Geometria Analítica e uma tendência em deixar o tratamento do espaço IR3 para Ensino Superior.
Resumo:
Este artículo muestra los resultados de una actividad escolar con estudiantes del Nivel Medio Superior. La actividad se llevó a cabo en el curso de Geometría y Trigonometría. El objetivo principal de esta investigación es hacer una reflexión acerca de las diferencias entre la definición de un concepto y la imagen conceptual que los estudiantes tienen acerca de ese objeto. Así como también analizar las posibles implicaciones que esa diferencia podría generar en el entendimiento de los estudiantes de los conceptos matemáticos.
Resumo:
O objetivo dessa pesquisa é analisar os pontos de vista sobre a noção de derivada de uma função desenvolvida no Ensino Médio e que podem servir de apoio para a disciplina de Cálculo Diferencial e Integral no Ensino Superior. Para isso, escolhemos como referenciais teóricos centrais os pontos de vista de Thurston (1995) e a abordagem teórica em termos de pontos de vista de Rogalski (1995). Para melhor identificar as dificuldades associadas ao ensino e à aprendizagem da noção de derivada na transição Ensino Médio e Superior complementamos as análises utilizando as abordagens teóricas em termos de quadros de Douady (1984) e níveis de conhecimento de Robert(1997) e a teoria antropológica do didático de Bosch e Chevallard (1999). Os resultados encontrados mostram que pouca atenção é dada ao trabalho desenvolvido no Ensino Médio, não se levando em conta os conhecimentos prévios dos estudantes, o que pode justificar as dificuldades encontradas por esses nos primeiros anos do Ensino Superior.
Resumo:
La idea que motiva el presente trabajo se refiere a entender cómo generalizan los estudiantes de bachillerato y qué tipo de pensamiento les permite hacerlo, para ello planteamos a un grupo de estudiantes del IEMS actividades donde se debe identificar un patrón que predice una secuencia geométrica, como un primer acercamiento a la idea de generalización. Este patrón debe ser descrito de forma algebraica (fórmula). En este artículo mostraremos dos tipos de formulaciones distintas construidas por los estudiantes para abordar el problema con distintos tipos de pensamiento que nos permiten mirar aspectos que podrían determinar el éxito o fracaso del desarrollo cognitivo puesto en marcha por los estudiantes.
Resumo:
En este trabajo en proceso presentamos los resultados de la primera fase de nuestra investigación (análisis preliminar), que pretende reconocer a la práctica o la estrategia de la simulación que realizan los estudiantes al momento de resolver problemas de probabilidad y con ello las cuestiones en probabilidad será de gran sencillez teniendo a la herramienta de la simulación. En ello sostenemos que la práctica de la simulación enriquece al conocimiento matemático del ser humano y en particular a la probabilidad.
Resumo:
Esta investigación se propone responder a interrogantes iniciales que surgen en torno al planteamiento y ejecución de programas de actualización y capacitación, con la intensión de contribuir, en buena medida, a enriquecer nuestro conocimiento de lo que ocurre en el aula. En lo particular, centramos la atención en el papel de las explicaciones en la clase de matemáticas cuando se pretende introducir conceptos geométricos, específicamente la noción de semejanza en el nivel medio superior. Consideramos un modelo de investigación cualitativa, basada en el método etnográfico que toma a la observación como técnica de registro. Los participantes en la investigación son profesores en servicio del nivel medio superior.
Resumo:
Este trabajo complementa otras investigaciones que evidencian las “disfunciones escolares” que el operador raíz cuadrada presenta en el tránsito del contexto aritmético al algebraico y del algebraico al funcional. Juárez (2007) muestra cómo estudiantes de bachillerato en el estado de Guerrero, México, no logran detectar la problemática que se genera al considerar a las operaciones de potenciación y radicación como inversas sin considerar ninguna restricción. En este trabajo mostramos el rediseño de la secuencia de actividades de Juárez y los resultados de su aplicación a estudiantes de bachillerato en un centro de estudios científicos y tecnológicos (CECyT) del Instituto Politécnico Nacional (IPN) en el Distrito Federal, México. Mostraremos la nueva secuencia y las consideraciones que hicimos para modificarla, así como las respuestas de algunos estudiantes. Mostraremos que el considerar a las operaciones de potenciación y radicación como inversas permea en el conocimiento de los estudiantes.
Resumo:
Esta investigación se realizó con alumnos de Nivel Medio Superior (NMS) que habían cursado la asignatura de Matemáticas I y que tenían dificultades con la comprensión del concepto de número racional. El propósito fue poner en escena situaciones didácticas, para explorar sus efectos en la comprensión de este concepto. Para tener información precisa de cuál es el estado que guardaba este conocimiento en los alumnos, se hizo un diagnóstico, por lo que se diseñaron y validaron las situaciones que se utilizarían tanto en el diagnóstico como en la puesta en escena. En su diseño se consideraron los contenidos de aritmética de NMS, diferentes sistemas de representación y el modelo utilizado por Sierpinska sobre los actos de comprensión de conceptos matemáticos. Al comparar los resultados que se obtuvieron en el diagnóstico con los de la puesta en escena de las situaciones didácticas, se encontró que: el permitir que los alumnos conocieran diferentes formas de representar a los números racionales, el significado de cada una de ellas, así como convertir o traducir unas representaciones en otras a través de las situaciones didácticas, propició la construcción de este concepto y mejoraran su comprensión.
Resumo:
En este artículo se presentan cuatro propiedades topológicas del conjunto de los números reales, R, que, evidentemente o no, resultan ser todas equivalentes al Axioma del Extremo Superior (AES).