8 resultados para Pérez, Antonio, 1540-1611
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
El pasado 15 de abril se cumplían 300 años del nacimiento de uno de los cuatro matemáticos más geniales de la historia, Leonhard Euler. Para mí, los otros tres, y que cada cual elija su orden, son Arquímedes, Newton y Gauss. Si la calificación la hiciésemos atendiendo a la cantidad de los trabajos de primer orden realizados por cada uno de ellos, sin duda Euler ocuparía el primer lugar. A lo largo de su extensa vida Euler produjo más de ochocientos libros y miles de artículos y trabajos. Sus obras completas Opera Omnia ocupan más de 80 volúmenes. Sin lugar a dudas es el matemático más prolífico de la Historia. Pero, con ser importante la cantidad de trabajos, el aprecio de los matemáticos contemporáneos y posteriores a él se debe más a la riqueza, originalidad, belleza y genial agudeza de su obra que a su volumen.
Resumo:
La aparición hace ya unos cuantos años del programa CabriGéomètre supuso para muchos profesores y profesoras la apertura de una ventana de esperanza en el camino de ver y de enseñar la geometría de una forma diferente. El éxito de la filosofía del programa radicaba en la idea de poder contar con una pizarra electrónica en la que construir objetos geométricos tan habituales como trazar rectas, segmentos, perpendiculares, ángulos, triángulos, circunferencias, cónicas... y medir en forma directa longitudes, ángulos y áreas, se convertían en cosas tan simples como pulsar con el ratón en un icono.
Resumo:
Según datos del mes de enero ya existen en nuestro país más de dos millones y medio de usurarios de Internet; y no solo eso, cada mes se incorporan más de 100.000 personas nuevas a la Red. Sin duda muchos de ellos son matemáticos.
Resumo:
En primer lugar, quiero manifestar mi más sincero agradecimiento a los organizadores de estos II Encuentros Extremeños por la amabilidad que han tenido al invitame. Antes que nada, una aclaración. Al hablar de matemáticas experimentales me estaré refiriendo siempre a la enseñanza de nuestra materia. Nada más lejos de mis posibilidades que intentar adjetivar las propias matemáticas. Hablaré de enseñanza de las matemáticas y, en general, de la utilización de recursos que posibiliten la acción del alumno y su protagonismo en el aprendizaje. No pretendo, obviamente, magnificar ni dar valor absoluto a nada; las matemáticas experimentales serán, simplemente, una propuesta metodológica y organizadora del espacio educativo.
Resumo:
En la sección de cabeza del número anterior de SUMA habíamos dejado a Galileo sumido en su sutil pero lamentable error de que la curva por la que una bola caería de un punto más alto a otro más bajo en el menor tiempo posible sería un arco de circunferencia que uniese ambos puntos. Johann, el pequeño de los Bernoulli, ya sabía que Galileo estaba equivocado cuando lanzó en el verano de 1696, el reto público, pensando más en provocar a su hermano mayor Jacob que en otra cosa, de encontrar la auténtica curva braquistócrona, la de tiempo más breve posible.
Resumo:
Intervención del presidente de la Sociedad Andaluza de Educación Matemática Thales en el «Homenaje Póstumo al profesor Gonzalo Sánchez Vazquez», que tuvo lugar en Sevilla los días 21 y 22 de marzo de l997.
Resumo:
El último de los problemas propuesto a los lectores en el Tratado de Huygens, publicado por primera vez en 1657, es hoy día conocido como el problema de la ruina del jugador. Dicho problema consiste en calcular la probabilidad de que un jugador arruine al contrario en un juego a un número indeterminado de partidas, cuando los dos jugadores inician el juego con un cierto número de monedas cada uno. A priori, su enunciado asusta cuando se enfrenta por primera vez, pero puede ser un buen recurso didáctico para profesores que enseñan cálculo de probabilidades a estudiantes de un determinado nivel, dada la resolución elegante y cómoda que se dispone, sin necesidad de un gran aparato matemático. La autoría del problema, tradicionalmente asignada a Huygens, la resolución de éste, la de De Moivre de 1712, así como una resolución más actual y cercana al estudiante del mismo, forman parte del contenido de este artículo.
Resumo:
En este artículo presentamos un estudio contextualizado de Cours d’Analyse de Cauchy, analizando su significado e importancia. Presentamos especial atención al grado de elaboración teórica de límites, continuidad, series, números reales funciones y series completas, relacionando las aportaciones de Cauchi del nivel conceptual anterior a esta ahora.