38 resultados para Operaciones de reducción
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
La investigación se realiza en el Instituto Tecnológico Metropolitano de Medellín con estudiantes de 8º, 9º y 10º, en el marco de reconocimiento de los procesos de prueba propuestos por Nicolás Balacheff, analizando los procesos que realizan, y buscando identificar si la ausencia de éstos al interior del aula se debe al poco o mal manejo de los conceptos matemáticos, por esto se realiza una categorización de los errores y las dificultades que comenten los estudiantes; basados en el marco de la Enseñanza para la Comprensión, por último se establecerán estrategias didácticas que permitan a los estudiantes superar las dificultades, mejorando el dominio de los conceptos.
Resumo:
Este trabajo complementa otras investigaciones que evidencian las “disfunciones escolares” que el operador raíz cuadrada presenta en el tránsito del contexto aritmético al algebraico y del algebraico al funcional. Juárez (2007) muestra cómo estudiantes de bachillerato en el estado de Guerrero, México, no logran detectar la problemática que se genera al considerar a las operaciones de potenciación y radicación como inversas sin considerar ninguna restricción. En este trabajo mostramos el rediseño de la secuencia de actividades de Juárez y los resultados de su aplicación a estudiantes de bachillerato en un centro de estudios científicos y tecnológicos (CECyT) del Instituto Politécnico Nacional (IPN) en el Distrito Federal, México. Mostraremos la nueva secuencia y las consideraciones que hicimos para modificarla, así como las respuestas de algunos estudiantes. Mostraremos que el considerar a las operaciones de potenciación y radicación como inversas permea en el conocimiento de los estudiantes.
Resumo:
Usando el método de variación de parámetros, construimos la solución particular de una ecuación diferencial de segundo orden. Luego demostramos que es una representación diferente pero equivalente a aquella solución construida por el método de reducción de orden.
Resumo:
El presente estudio tiene como propósito determinar el efecto de la estrategia constructiva diseñada y aplicada para aprender a resolver operaciones de adición y sustracción con fracciones. Surge como una secuencia del trabajo de Vargas (2000) quien implementó una estrategia de diversificación de contextos representacionales para la enseñanza del concepto de fracción al mismo grupo experimental, trabajando con los contextos parte todo continuo, expresión verbal, a/b, expresión decimal, porcentaje, parte todo discreto, y recta numérica. La estrategia constructiva aplicada para las operaciones consistió en 9 sesiones de clase, en las que se relacionaban los diversos contextos de una fracción. Los resultados de este estudio demuestran que hubo riqueza de transferencia de contexto, presente en el desempeño de los alumnos del grupo experimental. La más frecuente fue la fracción como a/b, seguida de la expresión decimal. Todo esto ratifica la propuesta teórica de Duval (1993), de que la coordinación entre los registros (espontaneidad en la actividad de conversión y potencia de las transferencias alcanzadas por este grupo en el trabajo de Vargas) produjo rapidez en las actividades de tratamiento.
Resumo:
La impartición de la asignatura investigación de operaciones en la carrera de ingeniería industrial ha sufrido desde su introducción en Cuba en los años 60, variaciones tanto en su contenido como en el nombre de la misma. Conocida actualmente como modelación económica Matemática, en sus inicios incluía solamente dos asignaturas y no es hasta el diseño del plan de estudios " C ”, que se decide dividirla en tres, por la importancia que han cobrado en el mundo estas técnicas en la gestión empresarial. Es por esta razón que en el presente trabajo se analiza cómo la inclusión de la computación y de un fuerte trabajo independiente de los estudiantes en las asignaturas, permite alcanzar un mayor dominio de los contenidos y elevar la calidad en la impartición de la misma, obteniéndose como resultado un egresado con mayor capacidad para el análisis y solución de problemas de toma de decisiones en la gestión empresarial.
Resumo:
El SND ha sido considerado un aspecto básico dentro del currículo de matemáticas, debido a su funcionalidad en los procesos de escritura de cantidades y en el desarrollo de algoritmos de operaciones básicas. Acorde a ello, la escuela dedica gran cantidad de tiempo al proceso de escritura y reconocimiento de cantidades, a la comparación de cantidades y al reconocimiento del valor posicional de una cifra, pero aun así los estudiantes no logran comprender los principios báscos del sistema. La presente propuesta se basa en la sistematización de una secuencia de actividades de aula orientada al reconocimiento de los principios que estructuran y dan sentido al S.N.D. como es el proceso de equivalencias entre las unidades del sistema y el reconocimiento del valor de posición de una cifra dada. Para llevar a cabo el proceso de sistematización de experiencias, se retomaron los principios metodológicos de la investigación acción educativa. Estas orientaciones permiten una búsqueda continua de alternativas de trabajo, y a la vez integran la exploración reflexiva que el docente hace de su práctica incidiendo en la lanificación y el mejoramiento de la misma, lo cual constituye un elemento esencial para la formación investigativa de los futuros docentes de matemáticas
Resumo:
En el análisis del discurso matemático manifiesto en un texto de álgebra escolar, hemos encontrado que el dominio de la variable es un concepto presente desde la aparición de las expresiones generalizadoras de operaciones, relaciones y propiedades de los números reales, que tan sólo se explicita en el estudio del álgebra de las expresiones algebraicas. Este concepto, junto con el de conjunto de referencia de una expresión y con el de conjunto solución, juega un papel protagónico en diferentes contextos del álgebra escolar, que le permiten configurarse como una variable didáctica imprescindible en la significación de muchos otros conceptos algebraicos.
Resumo:
En este trabajo establecemos la siguiente hipótesis: el sistema conjeturas-pruebas-refutaciones constituye la lógica del descubrimiento matemático escolar; bien entendido que en las matemáticas de la enseñanza secundaria el énfasis no puede situarse en la frontera móvil que Lakatos (1978) ha señalado en el trabajo de los matemáticos profesionales, esto es, la frontera demostraciones/refutaciones sino más bien en la frontera anterior, conjeturas/demostraciones. Dicho sistema supera didácticamente al enfoque unidimensional de demostración como prueba formalizada, enfoque tradicional del estilo deductivista en la enseñanza de las matemáticas. Esta hipótesis surge del análisis de las dificultades epistemológicas, cognitivas y didácticas del concepto de demostración (en particular, de la demostración por reducción al absurdo) y de la revisión de algunos estudios experimentales sobre la práctica escolar de la demostración.
Resumo:
Vamos a usar los NÚMEROS MÁGICOS, es decir, números que ante determinadas operaciones (la multiplicación, normalmente) presentan un comportamiento sorprendente.
Resumo:
El artículo analiza las estrategias desarrolladas por estudiantes de nivel medio superior al resolver problemas matemáticos de la prueba PISA. El estudio toma como base las explicaciones escritas, verbales y gestuales presentadas por los estudiantes en el proceso de resolución de los problemas. Fueron caracterizadas dos tipos de estrategias: formales e informales. Las primeras, a partir de conceptos sobre objetos, relaciones y operaciones, así como de proposiciones y propiedades matemáticas y las segundas, por medio de transformaciones como la descomposición y recomposición de formas geométricas, asimismo, del uso de la estimación visual y estimación de medidas.
Resumo:
En este estudio, de orden cualitativo, se aplicó un cuestionario a 17 estudiantes con déficit auditivo, 18 a 24 años de edad, para obtener información sobre su comprensión de los números naturales, sus operaciones y sus relaciones básicas. Registrados en papel, los reactivos se presentaron en lengua escrita, con términos sencillos. Se prescindió de intérprete en la lengua de señas mexicana para identificar directamente posibles dificultades de comprensión de los conceptos matemáticos implicados; además, la aspiración de los participantes en el estudio al acceso a un bachillerato en línea impone su dominio de la lengua escrita. Los resultados indican el predominio de un razonamiento aditivo sobre el multiplicativo y, a lo más, una abstracción pseudoempírica en edades que en los normoyentes corresponden a las etapas del pensamiento formal. La escasa y deficiente producción en lengua escrita referida a los reactivos sugiere investigar el empleo del método de logogenia para su adquisición en conjunción con la del conocimiento matemático.
Resumo:
En el desarrollo de esta actividad se discute cómo se transforma una función, de la cual se conoce su representación gráfica y no su representación algebraica. La actividad consiste en un estudio de la gráfica de una función prototipo totalmente descontextualizada. Se propone la composición de funciones, operaciones entre gráficas y su relación con algunas formas analíticas asociadas al variar algunos de sus parámetros, para mirar el comportamiento global tanto de la función compuesta, como de la familia de funciones resultantes; que permita relacionar la representación gráfica de una función compuesta con las funciones que la componen y explorar patrones en las familias de éstas y así poder predecir el comportamiento de una función cualquiera bajo este tipo de transformaciones.
Resumo:
Se presenta una experiencia de investigación-acción colaborativa en fase de desarrollo que parte de la preocupación del profesorado de un colegio de Educación Primaria por mejorar su metodología en lo relativo al desarrollo del pensamiento numérico. El centro, que está ubicado en un barrio con alto riesgo de exclusión social, inició su transformación en Comunidad de Aprendizaje hace tres años. A grandes rasgos, la apuesta metodológica se basa en el aprendizaje significativo del Sistema de Numeración Decimal de la mano de unos materiales manipulativos concretos y la utilización de los denominados algoritmos Abiertos Basados en Números (ABN) para el cálculo. El proyecto, en el que participan los maestros y maestras del centro, profesorado de Didáctica de las Matemáticas, asesores de formación y alumnado universitario, pone en acción iniciativas de formación del profesorado, innovación en el aula e investigación educativa.
Resumo:
Se estudia el proceso que va desde las acciones reales y efectivas de añadir y quitar hasta la construcción de las operaciones aritméticas de suma y resta por parte de los escolares de 3, 4 y 5 años. El esquema lógico-matemático subyacente es el de transformaciones. Para que se den estas operaciones deben presentarse simultáneamente dicho esquema y la cuantificación, siendo esa simultaneidad la que lleva a las relaciones numéricas. Teniendo en cuenta que el origen de las operaciones de suma y resta en el escolar está supeditado a las acciones de añadir y quitar que se desarrollan en un proceso de construcción mental de los esquemas lógicos-matemáticos de transformaciones de cantidades discretas, se propone un plan de actuación en el aula de educación infantil mediante un tratamiento sistemático de dichas operaciones.
Resumo:
En este trabajo se presenta un análisis de los resultados obtenidos en el examen diagnóstico de matemáticas, aplicado a los alumnos de nuevo ingreso en el CECYT “Juan de Dios Bátiz Paredes”, del I.P.N. Este análisis se realiza considerando los resultados obtenidos en la aplicación del mismo, durante un período de tres años. Los reactivos del examen están elaborados considerando los temas y clasificación especificados en el plan de estudios de la Secundaria, según el Ceneval. En habilidad matemática podemos mencionar: sucesiones numéricas, patrones numéricos, series espaciales, patrones espaciales, problemas aritméticos y problemas de razonamiento. El examen está dividido en: aritmética, álgebra y geometría. También se evalúa conceptos y operaciones y resolución de problemas. El informe destaca los reactivos con mayores y menores porcentajes de aciertos, documentando el tipo de errores más comunes que incurren y su relación que guarda con la enseñanza de las matemáticas. A partir de los resultados obtenidos se plantean acciones para que los alumnos puedan afrontar con buenos resultados los cursos de matemáticas del bachillerato.