11 resultados para Nuevo diseño curricular
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Se busca generar una discusión sobre el proceso de diseño y sistematización de una experiencia de aula en la cual se integra el Ambiente de Geometría Dinámica (AGD) Cabri 3D en el aprendizaje de la transformación de rotación en el espacio. En nuestra propuesta, encontramos investigaciones importantes en didáctica de las matemáticas que han puesto en evidencia las dificultades que los estudiantes presentan comúnmente en la exploración de propiedades de los objetos geométricos en el espacio, e incluso la representación de los mismos en él. Por lo cual, la comunicación se apoya en una aproximación instrumental que busca dar cuenta del papel mediador de Cabri 3D como un instrumento construido por el sujeto en el contexto de aprendizaje de la geometría. La propuesta se basa en el diseño de una situación didáctica en la que se integra el AGD Cabri 3D; hemos introducido una categoría que caracteriza el objeto matemático a movilizar en la secuencia de situaciones didácticas, esta categoría es la transformación de rotación en el espacio. La primera caracterización debe darse desde el reconocimiento de la Geometría transformacional como una alternativa para que los estudiantes construyan conocimiento del espacio a partir de la exploración y actuación sobre el mismo, así en la propuesta de la secuencia didáctica se tomara en consideración que la transformación de rotación posibilita la exploración de aspectos complejos tales como el sentido, la magnitud angular y la invarianza de propiedades. Esta última (la invarianza de propiedades) es uno de los aspectos más importante que se deberán distinguir en el diseño de la secuencia didáctica; en la composición de rotaciones por ejemplo, se reconoce como importante que los estudiantes tengan la capacidad de poder determinar cuáles objetos geométricos, puestos en juego en la transformación, conservan sus propiedades, así como poder determinar dentro de la rotación qué se conserva invariante. La segunda caracterización es el reconocimiento de la visualización como medio para que el estudiante interprete la información gráfica de conceptos matemáticos que se le presentan, con el fin de resolver un problema y realizar conjeturas acerca de la noción matemática que está trabajando. La pregunta central para animar la discusión en torno a nuestra comunicación es la siguiente: ¿Cómo influye el uso de Cabri 3D en el estudio del espacio y la exploración de la noción de transformación de rotación en el espacio?, ¿En la organización de la clase y los dispositivos que se deben implementar en la misma?
Resumo:
Este trabajo pretende exponer de manera resumida las experiencias de propuesta y puesta en práctica de un diseño curricular para la asignatura matemática en la carrera de ingeniería química, estudiar sus posibilidades y optimizar su aprovechamiento. El diseño curricular al que se hace referencia fue puesto en práctica, con el advenimiento del plan 2000 en la Universidad de la República, en Montevideo, Uruguay. El proceso de diseño curricular tuvo lugar en varios ciclos de investigación acción: puesta en práctica, evaluación, obtención de conclusiones y realización de propuestas, cuyos elementos más importantes se intentan reflejar en este articulo. Sobre la base de este proceso se formularan algunas conclusiones y recomendaciones.
Resumo:
Pensar que existen soluciones para cerrar la brecha entre el colegio y la universidad es utópico. Sin embargo, sí tiene sentido el trabajo que se haga con respecto al problema de la brecha para conocer y acercar los ideales y las expectativas que tienen las diferentes instituciones de educación. En la Universidad de los Andes fue evidente que dicho trabajo se podría orientar en diferentes direcciones y haciendo énfasis en la institución o bien en los profesores o bien en los estudiantes. Se podían abordar temas como: diseño curricular, creencias y actitudes de los profesores y de los estudiantes, métodos de enseñanza, concepciones sobre la enseñanza y el aprendizaje, dificultades y errores de aprendizaje y otros temas. Luego de varios traspiés en la elección del tema de investigación, elegimos finalmente explorar el tema del aprendizaje y considerar a los primíparos para el estudio por ser ellos los que viven realmente el proceso de transición del colegio a la universidad. Por otra parte, nos restringimos al área de precálculo motivados en parte porque en esta materia había un mayor índice de desaprobación. Concretamente, se propuso como objetivo general describir un perfil de aprendizaje en matemáticas del estudiante de Precálculo en el momento de ingresar a la Universidad. Del objetivo anterior se derivó el problema principal de este proyecto: definir los elementos conceptuales con los cuáles articular la descripción de dicho perfil. La presentación está dividida en cuatro partes, en la primera se expone un marco conceptual que presenta los elementos con los cuales se describirá el perfil, la segunda y tercera se refieren respectivamente a la metodología de la investigación y a los resultados obtenidos y la última a las conclusiones del trabajo.
Resumo:
AUTONOMÍA ESCOLAR Y PLANIFICACIÓN EN MATEMÁTICAS La autonomía escolar se estableció en Colombia en 1994, con la intención de que las instituciones educativas adaptaran el currículo a su contexto. Como consecuencia, instituciones y profesores se hicieron responsables del diseño curricular en todas las áreas, con la guía de lineamientos curriculares publicados por el gobierno. Estos diseños curriculares que se plasman en el plan de área. En este trabajo caracterizamos los planes de área de matemáticas en una muestra de conveniencia de 18 colegios de educación básica secundaria y educación media de Bogotá y sus cercanías y exploramos en qué medida se llevan a la práctica los lineamientos gubernamentales en esos documentos. Codificamos los planes de área teniendo en cuenta las cuatro componentes del currículo: el contenido, los objetivos, la metodología y la evaluación. Para cada una de estas componentes, establecimos:1. el nivel de generalidad con el que se trata, 2. los términos que las instituciones utilizan para referirse a ella y 3. la coherencia y la estructura con la que las instituciones la describen. Los resultados ponen de manifiesto la variedad de aproximaciones de las instituciones de la muestra a la planificación del área de matemáticas. Esta variedad se constata en el número de niveles de generalidad que aparecen en los documentos, en la diversidad de términos que se utilizan para referirse a cada uno de los componentes curriculares y en el nivel de detalle con que se describen. Los resultados sugieren que, en las instituciones de la muestra en las que las ideas de estándar y competencia aparecen en el plan de área, estas ideas no juegan un papel organizador del diseño curricular. Así mismo, los resultados muestran que no existe un significado compartido para los términos “estándar”, “objetivo”, “logro” o “desempeño” entre los documentos de la muestra. Adicionalmente, hemos observado que no se constata coherencia entre esta expectativa de aprendizaje y el contenido propuesto dentro de la planificación. Estos resultados nos llevan a conjeturar que, en las instituciones a las que pertenecen los documentos de la muestra, no existe una aproximación sistemática, estructurada y fundamentada a la planificación curricular.
Resumo:
El módulo 7 centra su atención en una evaluación del trabajo realizado hasta el momento con el objetivo de proponer y justificar una nueva planificación de implementación futura. Su desarrollo se concretará en cuatro actividades: la primera es un análisis de los resultados recogidos en relación con los logros de aprendizaje de los escolares; la segunda se ocupa desde el mismo punto de vista que la primera, de los factores afectivos estudiados; la tercera se centra en interpretar los análisis realizados en las dos primeras en términos de un balance estratégico de todo el proceso; finalmente, la cuarta actividad es un nuevo diseño con motivo del balance previo.
Resumo:
En este capítulo, presentamos el proceso de diseño e implementación de la unidad didáctica del cuadrado de un binomio para grado octavo. Iniciamos con la descripción de los análisis previos (análisis de contenido, análisis cognitivo y análisis de instrucción) a la implementación que permitieron producir el primer diseño de la unidad didáctica del tema. Seguidamente, detallamos el trabajo realizado en el análisis de actuación, con el cual empezamos a analizar y a revaluar aspectos del diseño implementado de acuerdo con los resultados obtenidos por los estudiantes. Justi camos el nuevo diseño de la unidad didáctica con base en los resultados de esos análisis. Por último, concluimos con algunas re exiones sobre la experiencia vivida a lo largo del proceso.
Resumo:
Este informe contiene cuatro partes: (a) diseño previo, (b) instrumentos y procedimientos de recolección y análisis de la información, (c) descripción de la implementación y (d) nuevo diseño. En el diseño previo, nos centramos en la delimitación del tema matemático, la formulación de los objetivos y las tareas para lograr el aprendizaje. Con los instrumentos y procedimientos de recolección y análisis de la información, evaluamos la actuación de los estudiantes, el diseño y la implementación. En la descripción de la implementación, mostramos los cambios que realizamos al diseño previo durante la implementación con su respectiva justi cación. Por último, en el nuevo diseño explicamos las mejoras que realizamos a las tareas con motivo del análisis de sus debilidades, amenazas, fortalezas y oportunidades.
Resumo:
Propuesta para un planteamiento de la Geometría en la Enseñanza Secundaria Obligatoria (12-16), siguiendo las directrices del Diseño Curricular Base.
Resumo:
En el trabajo se resumen los aspectos fundamentales de la conferencia especial que el autor desarrolló durante la 16 Reunión Latinoamericana de Matemática Educativa, celebrada en el ISPJAE de La Habana en julio de 2002. En dicha conferencia hizo una sucinta historia de la experiencia cubana en diseño curricular, con énfasis en el período que se inicia con la reforma de la enseñanza superior realizada en Cuba en 1962, y expuso los principios y características esenciales del llamado Plan de Estudio “C” perfeccionado de la Carrera de Matemática, actualmente vigente en las universidades cubanas, que basa su sistema educativo en la resolución de problemas profesionales y en la vinculación de los estudiantes con la práctica social en la cual se desempeñarán como profesionales. El autor es el presidente, desde 1988, de la Comisión Nacional de la Carrera de Matemática en la República de Cuba.
Resumo:
El documento para el área de Matemáticas de la serie Lineamientos Curriculares (MEN, 1998) es una directriz legal, conceptual y metodológica para el diseño, gestión y evaluación de los procesos de formación que adelantan los educadores matemáticos colombianos. En este sentido y particularmente en lo que se refiere al pensamiento aleatorio y su desarrollo, el Proyecto Curricular LEBEM9 brinda un espacio de formación para el estudio de los objetos estocásticos. En esta investigación se presenta una caracterización del significado institucional pretendido sobre Probabilidad como objeto disciplinar para brindar elementos de análisis sobre el proceso del proyecto curricular en esta dirección.
Resumo:
En años recientes, un cuerpo creciente de investigaciones en didáctica de las matemáticas han identificado algunas dificultades en relación con la enseñanza y aprendizaje de contenidos temáticos, procesos y contextos relacionados con el pensamiento espacial y sistemas geométricos, siendo comúnmente atribuidas a causas de orden epistemológico, cognitivo, curricular y didáctico. En este marco se genera la necesidad de integrar recursos, específicamente materiales manipulativos, al currículo y a las prácticas escolares, que permitan fortalecer en los estudiantes los conocimientos obtenidos para resolver algunos problemas de su entorno escolar y cotidiano.