7 resultados para Nosotros
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
tema en el contexto educativo colombiano, llevan a que dos profesores de matemáticas de educación básica y media, se den a la tarea de diseñar y desarrollar una propuesta para la superación de sesgos en el razonamiento probabilístico de sus estudiantes. De esta manera, en el marco de la investigación-acción, se recoge la experiencia y reflexión de tres implementaciones de aula consecutivas: La primera con estudiantes de grado décimo, cuyo énfasis estuvo dado en el enfoque clásico de probabilidad, que llevó a que los estudiantes no tuvieran cambios significativos en sus argumentaciones respecto a los fenómenos de probabilidad; la segunda con estudiantes de grado séptimo, donde el enfoque fue netamente experimental, convirtiéndose en un obstáculo para desarrollar procesos de institucionalización del saber, que permitieran a los estudiantes formalizar algunos conceptos. Las reflexiones suscintas a esta experiencia llevaron al desarrollo de una tercera, también con estudiantes de grado séptimo, pero en otra institución, donde se construyó de manera conjunta y horizontal con los estudiantes una situación problema abierta a los dos enfoques de probabilidad (clásico y experimental) que permitió desarrollar las actividades de acuerdo al avance de cada grupo en el proceso de resolución. De ésta manera se contribuyó en forma significativa a la superación de sesgos probabilísticos, y se consolidó para nosotros un instrumento modelo para la enseñanza de las matemáticas.
Resumo:
En esta investigación desarrollada desde la perspectiva teórica de la aproximación socioepistemológica, se presenta, la producción y puesta en escena de una secuencia basada en la ingeniería didáctica. De manera específica, este trabajo indaga sobre qué alternativas pueden ser factibles para la construcción escolar del significado de los números complejos, bajo la hipótesis de que su significado puede ser construido a través del proceso de convención matemática. El análisis de la producción de los estudiantes, al trabajar una secuencia de actividades diseñada por nosotros en base a la hipótesis anterior, da evidencia de que a pesar que los estudiantes insistían en que “las raíces cuadradas de números negativos no existen”, nuestra secuencia los indujo a operar con ellos.
Resumo:
Hasta hace poco la idea de que todo país estable tenía un perímetro de frontera y una superficie determinada formaba parte de las firmes creencias de todos nosotros. En estos sorprendentes tiempos en que vivimos hasta estas ideas firmes sobre medidas empiezan a ser superadas. Durante décadas la escasez de terreno inducía a construir edificios cada vez más altos y a ir aumentando la cotización de determinadas zonas como las de los centros y la primera línea de mar. Esto esta liquidado.
Resumo:
La mayor parte de nosotros hacemos uso de los créditos que nos ofrecen las entidades financieras para la adquisición de distintos bienes, sobre todo la vivienda. En este artículo pretendemos mostrar las matemáticas que se encuentran debajo de estas operaciones financieras, evitando en lo posible el lenguaje financiero. También introducimos el concepto de la Tasa Anual Equivalente (TAE) que nos sirve para comparar los distintos créditos, así como un programa para DERIVE que nos permite calcularla en distintas situaciones.
Resumo:
El presente trabajo, sobre los fundamentos matemáticos del planímetro, viene a continuar la tarea emprendida en 1990 cuando, con un grupo de trabajo que se formó en el IB Félix de Azara de Zaragoza durante el curso 1990-91, se constituyó un grupo de investigación educativa subvencionado por el MEC para trabajar en lo que podría constituir una matemática pretécnica. En este proyecto, entre otros temas, nos dedicamos a la construcción de aparatos de medida, estudiando sus fundamentos matemáticos y sus aplicaciones. El estudio de los fundamentos matemáticos del planímetro, por su nivel, caía fuera de lo que se podría explicar a los alumnos de bachillerato, pero puede resultar interesante para despertar la curiosidad de los profesores, como nos ocurrió a nosotros. '
Resumo:
La orientación que tradicionalmente se da a este tema es sumamente abstracta y en la mayoría de los casos carece completamente de sentido para nuestros alumnos. Ciertamente muchos de ellos acabarán haciendo una gráfica más o menos aproximada a partir de la fórmula algebraica que nosotros les demos (en ocasiones camuflada con algún pequeño enunciado), pero esto carecerá de significado alguno para la mayoría.
Resumo:
Con frecuencia, al leer el encabezamiento de un artículo, el lector intenta hacerse una idea aproximada de lo que puede estar escrito bajo él, aunque no siempre coincida con lo que realmente hay. Para evitar que esto ocurra entre nosotros, y dado que el título resulta bastante genérico, trataré de introducirle con unos breves comentarios, de manera que si no se siente interesado pueda pasar al próximo artículo. Pero si es un aficionado a los problemas de pasatiempos, o le gusta entretenerse en averiguar" cómo otra gente resuelve problemas, o quiere reflexionar sobre el propio pensamiento cuando es usted el resolutor, o está preocupado en líneas generales por la enseñanza, deténgase un momento y concédame un margen de confianza. Esto quizá le pueda interesar.