3 resultados para Matriz multirrasgo-multimétodo
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
El objetivo esencial del trabajo es emitir una propuesta metodológica, como vía alternativa, para abordar la resolución de ciertos Sistemas de Ecuaciones Diferenciales Lineales (SEDL) expresables en forma normal, usando métodos matriciales, a partir del empleo de la diagonalimción y normalización de matrices a través de la matriz normal de Jordan y usando para ello un procedimiento único, basado en el método analítico que es empleado para resolver la ecuación diferencial lineal de primer orden dada en su forma característica, sin soslayar, la obligada extensión a este contexto. Desde el punto de vista didáctico, la metodología general que se propone, para la resolución de estos SEDL es una de sus mayores ventajas metodológicas, ya que, precisamente, proporciona una vía operacional única y fija, con las obligadas transferencias contextuales que fueron señaladas, esperándose lograr una estructuración sistémica de los contenidos asociados al tema, en aras de alcanzar mayores niveles de asequibilidad dentro del proceso de asimilación.
Resumo:
Destacam-se, neste artigo, resultados parciais de um trabalho que se constitui em uma investigação sobre o significado da contextualização do âmbito da Matemática, do seu ensino e aprendizagem, considerando o currículo de Matemática no Ensino Médio, tendo como foco de análise a matriz de competências do Exame Nacional do Ensino Médio (ENEM) e as provas de Matemática desse exame. A investigação está sendo desenvolvida em uma perspectiva qualitativa, estando focada, no momento, na realização de uma análise crítico reflexiva das questões de Matemática e suas Tecnologias das provas do ENEM de 2009 e 2010, com o objetivo de identificar as competências e habilidades requeridas na solução das questões, bem como os conteúdos e contextos a que se referem.
Resumo:
El presente trabajo consiste en la segunda parte de una aplicación de los valores y vectores propios de una matriz, para resolver una relación de recurrencia homogénea lineal con coeficientes constantes. La aplicación abordada utiliza la teoría de matrices de Jordan, para generalizar el método de trabajo que se expuso en la primera parte de este artículo.