35 resultados para Materiales de construcción-Congresos
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En este trabajo presentamos la papiroflexia modular como metodología para el estudio de un poliedro concreto: el cubo. Se presenta una propuesta de actividad para llevar a cabo con los estudiantes así como un análisis de los conceptos implicados en el proceso (paralelismo, simetría, medida,...). Finalmente se presentan algunas reflexiones didácticas.
Resumo:
La geometría en el currículo de secundaria se introduce con la intención de proporcionar al alumno una mayor capacidad de comprensión de la organización espacial del mundo que nos rodea, exigiendo para ello un aprendizaje sistematizado. Con este propósito, el ``Grupo PI' trabaja en el desarrollo de actividades para el aula utilizando un material económico y de fácil adquisición como es el papel. El objetivo es proporcionar al profesor un material eficaz para el trabajo en el aula y aproximar a los alumnos a la Geometría Plana a través de una serie de tareas estructuradas que logran una mayor significatividad del proceso de aprendizaje. Se emplearán axiomas del origami para crear secuencias que permitan la construcción de representaciones significativas en los procesos de aprendizaje. Por último, intentaremos mostrar a los profesores la utilidad del papel como material didáctico en la construcción de conocimiento geométrico.
Resumo:
El presente trabajo de investigación tiene por objetivo la obtención de indicadores para la organización de saberes matemáticos correspondientes al área de Precálculo, Geometría y Álgebra de nivel medio. Para la consecución de éste, se realiza en primera instancia un estudio documental el cual permitiera generar un estado del arte de propuestas didácticas generadas en Matemática Educativa en la última década, seguido de un estudio descriptivo cuyo objetivo es identificar aquellos elementos que caracterizan las propuestas como favorecedores de la construcción del conocimiento matemático. Particularmente nos centraremos en los resultados obtenidos al momento en el área de Precálculo, entre los cuales se tiene que las propuestas didácticas parecen tener en común el que la construcción del conocimiento se dé a través de la práctica humana y el carácter científico de los conocimientos matemáticos, como son: la predicción, la visualización y la modelación. La tecnología ya no es un recurso para el profesor sino una herramienta para el estudiante.
Resumo:
La idea que motiva el presente trabajo se refiere a entender cómo generalizan los estudiantes de bachillerato y qué tipo de pensamiento les permite hacerlo, para ello planteamos a un grupo de estudiantes del IEMS actividades donde se debe identificar un patrón que predice una secuencia geométrica, como un primer acercamiento a la idea de generalización. Este patrón debe ser descrito de forma algebraica (fórmula). En este artículo mostraremos dos tipos de formulaciones distintas construidas por los estudiantes para abordar el problema con distintos tipos de pensamiento que nos permiten mirar aspectos que podrían determinar el éxito o fracaso del desarrollo cognitivo puesto en marcha por los estudiantes.
Resumo:
Este trabajo se centra en la resolución de problemas y en el uso de materiales didácticos. En primero lugar, describiremos cada uno de estos elementos y las relaciones que existen entre ambos. Seguidamente, basándonos en la importancia de estas relaciones, describiremos el taller y particularizaremos en las tareas propuestas y en la utilización de algunos materiales para la resolución de problemas.
Resumo:
En el período comprendido entre septiembre de 2001 y octubre de 2002, una Empresa Docente de la Universidad de los Andes adelantó el proyecto de investigación "Rutas pedagógicas de las matemáticas escolares. Una mirada a la práctica del profesor", con el propósito de acopiar información que contribuyera a lograr descripciones de la práctica de los profesores de matemáticas en instituciones de educación de básica secundaria de Bogotá. Tales descripciones, por la gran y variada cantidad de aspectos que consideran, pueden ayudar a conocer y comprender cómo suceden la enseñanza y el aprendizaje de las matemáticas en medio de prácticas socioculturales. La práctica docente del profesor de matemáticas observada desde el lente de la conceptualización construida, se percibe como una experiencia que difiere en alguna medida de la denominada "tradicional", pero que aun así no alcanza a transformar la manera de abordar las matemáticas.
Resumo:
A partir de la historia de la matemática se pueden diseñar actividades que favorezcan la formación humanística y matemática de nuestros estudiantes. En este caso se presentan algunos acercamientos de la civilización China a la noción de aproximación, y con base en estos se muestra parte de una actividad que busca fortalecer la comprensión de esta noción básica del cálculo. Este trabajo es un producto parcial del grupo de estudio en Historia de la Matemática del Departamento de Matemáticas del Colegio Gimnasio Moderno. En este momento el grupo centra su atención en el estudio de desarrollos históricos que estén relacionados con nociones básicas del Cálculo como aproximación, variación, optimización y predicción; así como en el diseño de actividades que favorezcan la comprensión de estas nociones. La razón por la cual nos interesa el Cálculo, es porque es una de las áreas de la matemática que mayor dificultad presenta a los estudiantes, ya que sus conceptos se basan en nociones de inexactitud y cambio que evidentemente chocan con la concepción tradicional de la matemática como una ciencia exacta. Por ejemplo, la comprensión del concepto de límite en un sentido riguroso es extremadamente difícil y casi imposible para los estudiantes debido a que la noción en la que se sustenta, la aproximación, produce tal incertidumbre que los mismos profesores la han expulsado de aquella variedad de nociones básicas que deben ser enseñadas en la escuela. Pero además, la estructura conceptual de ésta noción es tan compleja, que requiere de un tiempo prolongado y del uso de diferentes vías didácticas para ser plenamente comprendida (García et al., 2002). Haciendo un estudio de los desarrollos matemáticos de la civilización China nos encontramos con que en ella se establecieron algunos procedimientos de aproximación para calcular áreas de regiones curvilíneas, así como un método para aproximar tanto como se quiera la raíz cuadrada de un número; también obtuvieron la fórmula del volumen de la esfera por un método que antecede a la técnica de Cavalieri en doce siglos aproximadamente. Este taller pretende por una parte, mostrar los acercamientos de la civilización China a algunas nociones básicas del cálculo, específicamente la aproximación y la variación; así como hacer evidente la presencia de procesos infinitos en algunos desarrollos matemáticos de esta civilización. Por otra parte, busca presentar algunas actividades diseñadas desde una perspectiva histórica, es decir, un diseño que resalta la dimensión humana del conocimiento matemático, sus conexiones con otros ámbitos de la cultura, el contexto en el que nace y evoluciona, y por supuesto, que busca fortalecer la formación matemática de nuestros estudiantes. En la primera sesión, mostraremos los acercamientos a las nociones básicas de aproximación y/o variación de la civilización China. En la segunda sesión presentaremos algunas actividades inspiradas en los desarrollos de las civilizaciones anteriormente mencionadas.
Resumo:
Tradicionalmente la geometría desde la escuela se ha enseñado desde un mismo sentido: lo bidimensional, sin considerar que las representaciones bidimensionales se hacen precisamente de objetos tridimensionales del mundo físico. Actualmente y según los lineamientos curriculares de matemáticas para una mejor percepción del espacio se requiere que el estudiante comunique y represente el espacio bidimensional a través de experiencias significativas con lo tridimensional, esta relación entre el espacio tridimensional con el plano puede desarrollarse a partir de la construcción de poliedros debido a que con estos se puede propiciar tres tipos de procesos cognitivos importantes para el desarrollo del pensamiento espacial: los procesos de visualización, los procesos de construcción y los procesos de razonamiento.
Resumo:
En la formación de estudiantes para docentes en matemáticas del proyecto curricular licenciatura en educación básica con énfasis en matemáticas (LEBEM), es importante para el desarrollo de nuestro quehacer profesional considerar aspectos relevantes que influyen en los procesos de enseñanza-aprendizaje, como lo son: las estructuras del pensamiento (en el sentido de los conocimientos previos de los estudiantes, sus dificultades, razonamientos y demás), el contexto y las situaciones de enseñanza que se proponen. Lo anterior nos llevó a reflexionar acerca de la manera en que tenemos en cuenta estos tres aspectos en el momento de diseñar un ambiente de aprendizaje, de manera que las construcciones realizadas por los estudiantes les sean significativas, lo cual implica que ellos puedan establecer conexiones con la utilidad que tiene el conocimiento en la resolución de problemas y la comprensión de fenómenos de la vida cotidiana.
Resumo:
Durante los cursos 1992 a 1998 hemos trabajado en un proyecto de investigación dirigido al estudio de las concepciones iniciales que tienen los alumnos sobre la asociación estadística y su evolución después de diversos experimentos de enseñanza usando ordenadores. En este trabajo, describimos brevemente los resultados de este proyecto, y los utilizamos como base para la reflexión sobre el papel del ordenador como recurso didáctico y como instrumento en la resolución de problemas, extendiendo las conclusiones presentadas en Batanero y cols. (1998).
Resumo:
En esta comunicación se presenta la primera parte de una investigación cuyo objetivo fue analizar si un experimento de enseñanza diseñado ad hoc ayudó a la construcción de caracterizaciones equivalentes del concepto de dependencia lineal, en lenguaje geométrico y analítico. En primer lugar se diseñó un experimento de enseñanza en un contexto de geometría dinámica utilizando simultáneamente representaciones geométricas y analíticas del concepto y se describió una ‘trayectoria hipotética de aprendizaje’ en términos del mecanismo de ‘reflexión sobre la relación actividad-efecto’. En segundo lugar se describieron las trayectorias de aprendizaje de estudiantes de 2o de bachillerato (17-18 años) identificando las ‘acciones de generalización’ y las ‘generalizaciones de la reflexión’.
Resumo:
Este trabajo se enmarca dentro de una investigación más amplia cuyo principal objetivo es indagar sobre la capacidad de los estudiantes de educación secundaria para traducir y relacionar enunciados algebraicos presentados en los sistemas de representación simbólico y verbal. La recogida de datos se realizó con 26 estudiantes de 4º de ESO a los que se propuso la construcción de un dominó algebraico, diseñado para esta investigación, y su posterior uso en un torneo. En este artículo presentamos un análisis de los errores cometidos en dichas traducciones. Entre los resultados obtenidos, destacamos que los estudiantes encontraron mayor facilidad al traducir enunciados de su representación simbólica a su representación verbal y que la mayoría de los errores cometidos al traducir de la expresión verbal a la simbólica son derivados de las características propias del lenguaje algebraico.
Resumo:
Este capítulo es nuestro informe final de la unidad didáctica sobre razones trigonométricas. Es el trabajo final de MAD, la concentración en Educación Matemática de la maestría en Educación de la Universidad de los Andes. Este trabajo nace de constatar que muchos profesores de matemáticas de grado décimo usan las razones trigonométricas como herramienta para solucionar ejercicios de resolución de triángulos, aplicados a problemas, sin tener en cuenta el contexto propio del estudiante. De otro lado, la implementación en el aula de recursos o materiales para la enseñanza de la trigonometría se ha restringido al uso de la calculadora de funciones para determinar ángulos y longitudes en función de una razón trigonométrica particular. Desde esta problemática diseñamos, implementamos y evaluamos la unidad didáctica de razones trigonométricas como propuesta de innovación en la Institución de Educación Distrital (IED) José Joaquín Castro Martínez. Esta unidad didáctica promueve la construcción del concepto razones trigonométricas a partir de situaciones que tienen sentido para el estudiante y que son cercanas a su propio contexto.
Resumo:
En la presente experiencia de aula se mostrarán los aspectos que hicieron necesario trabajar con los estudiantes de grado undécimo las cónicas, en especial, la circunferencia, desde lo planteado por el Ministerio de Educación Nacional en los Estándares de Calidad y en los Lineamientos Curriculares, para luego ver la necesidad del uso del geoplano como recurso didáctico para la construcción del objeto matemático, partiendo de las dificultades que presentan los estudiantes en la construcción e identificación de las propiedades de las cónicas, especialmente de la circunferencia. Seguidamente, se expone la descripción general de la experiencia, los logros y dificultades que surgieron en el proceso de enseñanza y se finaliza con la reflexión que generó este proceso de enseñanza-aprendizaje.
Resumo:
Esta investigación que forma parte de las tesis de maestría, se realiza en México con estudiantes de secundaria, de edades 14-15 años. El objetivo es dar a conocer las dificultades; que a partir de un análisis comparativo, tienen los alumnos al tratar de construir una expresión algebraica de segundo orden que defina el enésimo término al usar sucesiones figurativas. Para ello, se ha estado haciendo uso de dos de sus cuatro componentes del Modelo Teórico Local [MTL] (Filloy, 1999): modelo de enseñanza y de procesos cognoscitivos. Se realiza una evaluación diagnóstica, se clasifica a la población según los distintos perfiles: alto, medio y bajo rendimiento, para observar en entrevista clínica videograbada y elaborar un reporte de observaciones acorde al esquema de desarrollo de experimentación perteneciente al MTL.