6 resultados para MENTE Y CUERPO
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
La unidad didáctica que exponemos a continuación aborda los elementos que consideramos ne-cesarios para la solución de las dificultades que los estudiantes de grado séptimo encuentran al resolver situaciones que involucran la adición y sustracción de números enteros. Presentamos la descripción del problema a tratar, la manera en la que lo abordamos y los principales resultados de nuestra experiencia. Posteriormente, en el cuerpo de este documento, presentamos la funda-mentación del diseño de la unidad didáctica, seguido del análisis didáctico para la adición y sus-tracción de números enteros, la descripción y justificación del diseño de la unidad didáctica, la evaluación de la implementación, y el balance de la experiencia y reflexiones hacia el futuro. Fi-nalizamos presentando nuestras conclusiones.
Resumo:
Muchas veces obtenemos una visión de la realidad que no se corresponde con la realidad en sí misma, ya que la mente interrelaciona la percepción visual y las representaciones que guardamos en la memoria. Se muestra en esta web cómo las Matemáticas subyacen a estas ilusiones visuales.
Resumo:
Este documento contiene los aspectos esenciales de una conferencia dictada por el autor en el marco de las actividades de la RELME 16 celebrada en la Habana, Cuba. El tema se refiere a las concepciones alternativas relativas al análisis de funciones en ambientes gráficos. En especial se analizan la importancia de esas concepciones en tanto procesos cognoscitivos que interfieren en los procesos de aprendizaje, las posibilidades de ser cambiadas por otras aceptables y su permanencia en la mente de los estudiantes a pesar de emplear diseños instruccionales para removerlas.
Resumo:
El presente trabajo se inscribe dentro de la línea de investigación denominada Pensamiento y Lenguaje Variacional, trazada por el Dr. Cantoral. Esta línea de investigación estudia la articulación entre la investigación y las prácticas sociales que dan vida a la matemática de la variación y el cambio. El contexto general en el que se ubica el presente trabajo es el programa de investigación desarrollado por el Dr. Crisólogo Dolores cuyo objetivo principal se centra en el estudio de los procesos de desarrollo del pensamiento y lenguaje variacional en condiciones escolares (Dolores, 1996). En particular nuestro interés se enfoca en el estudio de la estabilidad y cambio de las concepciones alternativas relativas al análisis del comportamiento de funciones a través de sus gráficas, pues existen evidencias de que esas interpretaciones primarias se arraigan en la mente de los estudiantes e interfieren en el desarrollo del pensamiento variacional. De hecho, asumimos que parte importante del desarrollo de esta forma de pensamiento consiste en el dominio de los procesos de franqueo o superación de esas concepciones alternativas.
Resumo:
Su mirada recorrió los lomos del estante inferior y se detuvo en un título que le llamó la atención. Lo liberó de la hilera que lo aprisionaba y lo abrió al azar. Al menos eso era lo que pretendía, aunque el libro se abrió por una página señalada con un pliegue en la esquina superior. Quien lo practicó quería señalar un punto con una indicación perenne. Seguro que era cosa de su abuelo, fallecido hacía ya unos cuantos años. Fue precisamente el recuerdo de su muerte lo que le animó a entrar en la biblioteca. No sabía porqué, pero de repente le había venido a la mente la imagen del anciano leyendo ensimismado en aquel sillón antiguo, rodeado de incontables volúmenes, páginas, frases, palabras, letras.
Resumo:
Los profesores de matemáticas asociamos la discusión acerca de la fundamentación y axiomatización de las matemáticas con complejos teoremas y representaciones (Gódel, Cohen, Axiomática de GodelBernays, por ejemplo), bastante apartados de la matemática educativa. Pero su conocimiento, aún a nivel general, es interesante por sí mismo y clave para la observación de las matemáticas como una disciplina en constante transformación, más real que la visión habitual de un cuerpo estático e indiscutible de conocimientos. Por ello, me pareció conveniente, mostrar a los alumnos, una parte de la historia de los fundamentos de la geometría y su peculiar relación con el ser humano que es quien la crea o, por lo menos, la descubre, debate y aplica.